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Abstract
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from the data. Time-series techniques are employed to study the conditional comovement
between markups and output. Consistent with precautionary wage setting, we find
that wage markups increase after uncertainty shocks. The evidence for price markups,
on the other hand, is mixed, both at the aggregate as well as at the industry level,
regardless of whether it is measured along the labor or the intermediate input margin.
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1 Introduction

Since the seminal paper by Bloom (2009), many studies have focused on the effects of
uncertainty shocks on economic fluctuations (see Bloom 2014, for a survey). While time-series
approaches regularly find negative effects of uncertainty shocks on output (Baker, Bloom,
and Davis 2016; Jurado, Ludvigson, and Ng 2015; Bachmann, Elstner, and Sims 2013, and
numerous others),1 it has proven surprisingly difficult to generate negative output effects after
uncertainty shocks in representative agent models as uncertainty shocks are expansionary in
the standard RBC model. As shown by Fernández-Villaverde, Guerrón-Quintana, Kuester,
and Rubio-Ramírez (2015), Born and Pfeifer (2014), and Basu and Bundick (2017) and used
in various papers, countercyclical aggregate markups of the form present in standard New
Keynesian models are key to match the empirical evidence. Many recent representative
agent DSGE studies rely on this countercyclical movement of price and/or wage markups
conditional on uncertainty shocks.2 However, direct empirical evidence on the presence of
this transmission channel is limited.3

We therefore assess whether this so-called “markup channel” is consistent with the data.
To this end, we build a New Keynesian DSGE model with time-varying price and wage
markups that serves two purposes. First, the dynamic dimension of the model is used to
generate predictions on the effects of uncertainty shocks on price and wage markups that
can be empirically tested. In the model, an increase in uncertainty leads to an increase in
both price and wage markups and a decline in output, whereas without nominal rigidities the
precautionary labor supply motive dominates and output increases. Second, the intratemporal
first-order conditions can be used as a Chari, Kehoe, and McGrattan (2007)-type business
cycle accounting framework to construct aggregate price and wage markups from the data.

Time-series techniques are then used to identify uncertainty shocks in the data and to
study whether the conditional comovement between markups and output is consistent with
the one implied by the model. Overall, we find that in the data, wage markups robustly
increase after identified uncertainty shocks as the model predicts. This finding is robust

1See Berger, Dew-Becker, and Giglio (forthcoming) for a countervailing viewpoint that it is only realized
volatility and not future uncertainty that matters.

2E.g. Fernández-Villaverde et al. (2015), Born and Pfeifer (2014), Basu and Bundick (2017), Başkaya,
Hülagü, and Küşük (2013), Mumtaz and Zanetti (2013), Plante and Traum (2012), Cesa-Bianchi and
Fernandez-Corugedo (2018), Carriero, Mumtaz, Theodoridis, and Theophilopoulou (2015), Alessandri and
Mumtaz (2019), Castelnuovo and Pellegrino (2018), Johannsen (2014), and Leduc and Liu (2016). The latter
two rely on the existence of the ZLB and a frictional labor market, respectively, to amplify the effects of
aggregate uncertainty. Notable exceptions that do not rely on countercyclical markups are Christiano, Motto,
and Rostagno (2014) and Chugh (2016), who embed uncertainty in a financial accelerator mechanism.

3Fernández-Villaverde et al. (2015) provide some tentative evidence. However, their finding of an increase
in the price markup critically relies on estimating volatility shocks based on an exogenous process, but
subsequently treating these exogenous shocks as endogenous variables in a VAR.
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across different identification schemes as well as uncertainty and wage markup measures. In
contrast, we do not find consistent evidence for a strong increase in price markups.

Our investigation of the price and wage markups is related to Nekarda and Ramey (2013)
and Karabarbounis (2014), respectively.4 Nekarda and Ramey (2013) argue that aggregate
price markups are pro- to acyclical unconditionally and also regularly do not show the
conditional movement after shocks predicted by standard New Keynesian models. However,
they do not consider uncertainty shocks and only focus on the price markup, while the
main effect might work through wage markups. When we measure price markups with the
Nekarda and Ramey (2013)-approach using average hourly earnings, price markups tend to
fall after uncertainty shocks. However, Basu and House (2016) and Bils, Klenow, and Malin
(2018) (BKM in the following) have recently argued that measured average hourly earnings
often are not allocative due to the presence of implicit contracts and composition effects.
For that reason, we also investigate the effect of uncertainty shocks on the annual price
markup series of BKM, which are measured for self-employed and along the intermediate
input margin. Here, we find more mixed evidence. Price markups tend to show a delayed
increase after aggregate uncertainty shocks, but its significance very much depends on the
exact specification.

It is important to stress that the markup channel provides predictions only for aggre-
gate markups implied by aggregate equilibrium conditions (what BKM have called the
representative-agent labor wedge).5 Strictly speaking it is silent on what happens at a
disaggregated level.6 We nevertheless turn to disaggregated industry-level evidence and
investigate whether the model-predicted price markup response may i) simply be hidden by
heterogeneity in price stickiness at the industry level or ii) measuring price markups along the
labor margin instead of the potentially more flexible intermediate input margin. Qualitatively,
the industry-level results look very similar to the aggregate evidence, i.e. only weak evidence
for the price markup channel. This conclusion is also robust when estimating markups along
the intermediate input instead of the labor input margin.

4See also Shimer (2010). Our paper is also related to earlier papers studying the (unconditional) cyclical
movement of (price) markups (e.g. Rotemberg and Woodford 1991; Bils 1987), surveyed in Rotemberg and
Woodford (1999), as well as “business cycle accounting” studies like Chari et al. (2007), Parkin (1988), and
Hall (1997). Galí, Gertler, and López-Salido (2007) is an influential study that decomposes the labor wedge
into a firm and a household component to study the welfare implications of labor-wedge fluctuations.

5The present paper also is not concerned with heterogeneous agent models with non-convex adjustment
costs and idiosyncratic uncertainty like Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and
Terry (2018), and Bachmann and Bayer (2013), where real options effects are responsible for the negative
effects of uncertainty.

6These representative agent markups are therefore only loosely related to the average markups of De
Loecker, Eeckhout, and Unger (2018). Due to Jensen’s Inequality, one cannot easily move from the average
markup over firms to the markup of the average firm (see e.g. De Loecker and Eeckhout 2018).
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To measure aggregate uncertainty, we use a variety of measures and approaches. The
first uncertainty proxy is a model-consistent measure derived from the particle smoother
used to parameterize the model. We also employ the general macroeconomic uncertainty
measure of Jurado et al. (2015) (JLN) and identify exogenous shocks via a recursive ordering.7

Given that many uncertainty measures are available at monthly frequency while we only have
quarterly or annual markup data, we will employ two different approaches to deal with this
mixed-frequency problem: a two-step frequentist procedure following Kilian (2009) and Born,
Breuer, and Elstner (2018), which relies on local projections (Jordà 2005), and a Bayesian
mixed-frequency VAR following Eraker, Chiu, Foerster, Kim, and Seoane (2015).

Section 2 provides a detailed exposition on the mechanism embedded in New Keynesian
models that gives rise to contractionary uncertainty effects. Section 3 presents a baseline New
Keynesian DSGE with time-varying wage and price markups and documents the predicted
conditional comovement of output and markups following demand and supply uncertainty
shocks. The intratemporal first-order conditions of the model also provide an accounting
framework, which is used to construct price and wage markups from the data. Section 4
then identifies uncertainty shocks from the data, studies whether the conditional comovement
between markups and output is consistent with the one implied by the model, and provides
robustness checks. Section 5 investigates the price markup response at the industry level.
Section 6 concludes.

2 Precautionary pricing: a stylized model

As shown by Basu and Bundick (2017), the reason that uncertainty is expansionary in
the standard RBC model is the presence of a “precautionary labor supply” motive. When
faced by higher uncertainty, the household does not only self-insure by consuming less and
investing more, but also by working more. From the neoclassical production function, where
TFP is unaffected by uncertainty and capital is predetermined, follows that this increase
in labor results in an output expansion that fuels higher savings. The solution to generate
contractionary effects of uncertainty is to break this tight link between labor supply and
production. This can be achieved by introducing monopolistic competition in labor and goods
markets, which gives rise to time-varying markups (see also Fernández-Villaverde et al. 2015;
Born and Pfeifer 2014). In the presence of sticky prices and wages, firms and households
in their price- and wage-setting decisions face a convex marginal revenue product. This
gives rise to inverse Oi (1961)-Hartman (1972)-Abel (1983)-effects and precautionary pricing

7Our results are robust to using different uncertainty proxies such as the Baker et al. (2016)-economic
policy uncertainty proxy or the VIX and different identification schemes.
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when faced with uncertainty about future economic variables. Price-setters face the following
choice: If prices are set too low, more units need to be sold at too low a price, which is bad
for the firm. In contrast, if prices are set too high, the higher price compensates for being
able to sell fewer units. Due to this asymmetric, nonlinear effect, price setters prefer to err
on the side of too high prices and increase their markups. It is instructive to consider the
case of perfect competition. If the price is just an epsilon below marginal costs, the firm will
have to satisfy all demand at a loss, leading to (potentially) unbounded losses. In contrast, if
the price is just an epsilon too high, the firm will face zero demand. Hence, the worst case if
the price is too high is zero profits. If this increase in markups after uncertainty shocks is
strong enough, it dampens demand and decreases output.

To see this more clearly, consider the following stylized partial equilibrium example. A
firm i of a continuum of identical, monopolistically competitive firms chooses its optimal
price pi,t−1 subject to a Dixit-Stiglitz-type demand function yi,t =

(
pi,t−1
pt

)−θp
yt, where yt

is aggregate demand, θp is the demand elasticity, and pt the aggregate price level. For
the mechanism to be as transparent as possible, we assume the firm is subject to a Taylor
(1980)-type pricing friction in that it has to set its price one period in advance.8 Its output
is produced using a constant returns to scale production function that is linear in labor:
yi,t = li,t. The labor market is assumed to be competitive, with the economy-wide wage being
denoted by wt. Real firm profits are then given by

π =
[
pi,t−1

pt
− wt
pt

](
pi,t−1

pt

)−θp
yt . (2.1)

Without loss of generality, assuming for the aggregate variables that yt = 1 and wt
pt

=
(θp − 1)/θp, this simplifies to

π =
[
pi,t−1

pt
− θp − 1

θp

](
pi,t−1

pt

)−θp
. (2.2)

Expression (2.2) shows that there are two different channels through which prices affect
profits. First, a higher price pi,t−1 has an immediate price impact on the revenue, while leaving
the marginal costs unaffected. But second, there is an additional impact on the quantity
sold. The left panel of Figure 1 shows the profit function for θp = 13. As is well-known, in
the absence of uncertainty the firm will optimally charge a gross markup θp

θp−1 over marginal
costs, resulting in a profit-maximizing price of pi,t−1 = 1.

8This same general mechanism is also present in the Rotemberg price adjustment cost framework used in
the medium-scale New Keynesian model below as well as in Calvo- and Menu Cost-models. In all of these
settings, marginal profits are convex in the price (see, e.g., Fernández-Villaverde et al. 2015; Balleer, Hristov,
and Menno 2017).
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Figure 1: Stylized pricing example. Notes: period profit (left panel) and expected profit
of the firm (right panel) as a function of the price pi,t−1. The black dashed line
indicates the maximum of the respective function. The red dashed line displays
the mean preserving spread to the optimal price that the firm faces. The blue
dashed dotted line indicates the profits when choosing the mean optimal price of
1.

Assume now that the firm faces uncertainty about the optimal price, because the aggregate
price level is with probability 1/2 either pt = 1/1.05 or pt = 1/0.95, so that in the absence of
pricing frictions, either pi,t = 0.95 or pi,t = 1.05 is optimal. Thus, compared to the previous
situation, the optimal price is subject to a mean-preserving spread.9 Setting the price at the
expected optimal pi,t−1 = 1 is suboptimal, because it would lead to lower expected profits
due to the marginal profit being convex in the price. Rather, the optimal price in this case is
slightly higher at pi,t−1 = 1.02. This can be seen in the expected profit schedule as a function
of pi,t−1 shown in the right panel of Figure 1. A formal proof can be found in Appendix E.

The same mechanism is at work in the household sector where the households have to
maximize utility by setting a nominal wage subject to an equivalent demand function for
their labor services.10

9For ease of exposition we consider a mean-preserving spread to the endogenous variable. The same effect
would arise following a mean-preserving spread to aggregate price pt, but in this case an additional Jensen’s
Inequality effect would complicate matters due to the price level entering in the denominator.

10The asymmetry on the profit function comes from the isoelastic Dixit-Stiglitz demand function paired
with the assumption that demand always has to be satisfied. For small to moderate shocks, the latter
assumption can be justified by contractual obligations and reputational concerns. Firms tend to not close
shop if their posted price turns out to be too low, while workers cannot stay at home when asked to work
overtime, even if their marginal rate of substitution turns out to be high. However, these considerations also
suggest that firms can more easily avoid having to satisfy demand by “being out of stock”. This potential
violation of a crucial model assumption may be one reason why we find less evidence of a precautionary
pricing for firms.
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3 Model

In this section we construct a prototypical New Keynesian DSGE model that embeds the
previously outlined mechanism on the firm and household side. The model serves two purposes.
First, the dynamic dimension of model can be used to generate predictions on the effects
of uncertainty shocks on price and wage markups. Second, the intratemporal first-order
conditions can be used as a Chari et al. (2007)-type business cycle accounting framework to
construct aggregate price and wage markups from the data.

The model economy is populated by a continuum of intermediate good firms producing
differentiated intermediate goods using bundled labor services and capital, and a final good
firm bundling intermediate goods to a final good. A continuum of households j ∈ [0, 1] sells
differentiated labor services to a labor bundler. In addition, the model features a government
sector that finances government spending with distortionary taxation and transfers, and a
monetary authority, which sets the nominal interest rate according to an interest rate rule.
The full set of model equations is relegated to Appendix A.1.

3.1 Firms

The final good Yt is assembled from a continuum of differentiated intermediate inputs Yt(i),
i ∈ [0, 1], using the constant returns to scale Dixit-Stiglitz-technology

Yt =
[∫ 1

0
Yt(i)

θp−1
θp di

] θp
θp−1

, (3.1)

where θp > 0 is the elasticity of substitution between intermediate goods. Standard cost
minimization yields the demand for good i:

Yt(i) =
[
Pt(i)
Pt

]−θp
Yt , (3.2)

where Pt is the aggregate price level.
The monopolistically competitive intermediate good firms produce Yt(i) using capital

Kt(i) and a hired composite labor bundle Nt(i) according to a CES production function

Yt(i) = Y norm

α
[
Kt (i)

]ψ−1
ψ

+ (1− α)
[
Zt (Nt (i)−N o)

]ψ−1
ψ


ψ
ψ−1

− Φ .

Here, 0 ≤ α ≤ 1 parameterizes the labor share and Y norm is a normalization factor that
makes output equal to one in steady state.11 ψ is the elasticity of substitution between

11Note that both parameters are not structural parameters as they depend on the units of measurement of
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capital and labor, with ψ = 1 being the Cobb-Douglas case. The fixed cost of production Φ
reduces economic profits to zero in steady state, thereby ruling out entry or exit (see, e.g.,
Christiano, Eichenbaum, and Evans 2005). N o = φoN , where N denotes steady-state labor, is
overhead labor used in the production of goods.12 Zt denotes a stationary, labor-augmenting
technology process specified below. Each intermediate good firm owns its own capital stock,
whose law of motion is given by

Kt+1(i) =
1− δ − φK

2

(
It(i)
Kt(i)

− δ
)2
Kt(i) + It(i) , φK ≥ 0 , (3.3)

where δ denotes the quarterly depreciation rate of the capital stock. Equation (3.3) includes
capital adjustment costs at the firm level of the form introduced by Hayashi (1982).

Intermediate good producers are owned by households and therefore use the households’
stochastic discount factor for discounting. They maximize the present discounted value of
per period profits subject to the law of motion for capital and the demand from the final
good producer: [

Pt(i)
Pt

]1−θp

Yt −
Wt

Pt
Nt(i)− It(i)−

φp
2

(
Pt(i)
Pt−1(i) − Π

)2

Yt , (3.4)

where Nt(i) is hired in a competitive rental market at given wage rate Wt. The last term
denotes price adjustment costs as in Rotemberg (1982), where Π is steady-state inflation.
From the firms’ cost minimization problem follows the first-order condition for labor inputs
as

Ξp,t
Wt

Pt
= MPLt , (3.5)

where Ξp,t is the gross price markup over marginal costs. Due to monopolistic competition,
Ξp,t will generally not be equal to 1 as firms set a markup over marginal costs. Time-variation
in this markup is a central element of shock transmission in the New Keynesian model.

3.2 Households

Following Erceg, Henderson, and Levin (2000), we assume that the economy is populated
by a continuum of monopolistically competitive households, supplying differentiated labor
Nt(j) at wage Wt(j) to a labor bundler who then supplies the composite labor input to the
intermediate good producers. Formally, the aggregation technology follows a Dixit-Stiglitz

the input factors. For more details on how to deal with such dimensional constants, see Cantore and Levine
(2012).

12See Ratto, Roeger, and ’t Veld (2009) for one of the earliest DSGE models with overhead labor.
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form

Nt =
[∫ 1

0
Nt(j)

θw−1
θw dj

] θw
θw−1

, θw > 0 . (3.6)

Expenditure minimization yields the optimal demand for household j’s labor as

Nt(j) =
[
Wt(j)
Wt

]−θw
Nt ∀ j . (3.7)

Household j has preferences

Vt =
∞∑
h=0

βh
[(Ct+h(j))η(1−Nt+h(j))1−η]1−σ

1− σ , (3.8)

where the parameter σ ≥ 0 measures the risk aversion, 0 < β < 1 is the discount rate,
and 0 < η < 1 denotes the share of the consumption good in the consumption-leisure
Cobb-Douglas bundle.

The household faces the budget constraint

(1 + τ ct )Ct(j) + Bt(j)
Pt
≤(1− τnt )Wt(j)

Pt
Nt(j) +Rt−1

Bt−1(j)
Pt

+Dt(j)

− φw
2

(
Π−1 Wt(j)

Wt−1(j) − 1
)2

Yt + Tt ,

(3.9)

where the household earns income from supplying differentiated labor, which is taxed at
rate τnt . In addition, it receives real dividends Dt(j) from owning a share of the firms in the
economy and a real gross return Rt−1(Bt−1(j)/Pt) from investing in a zero net supply riskless
nominal bond. The household spends its income on consumption Ct(j), taxed at rate τ ct , real
savings in the private bond Bt(j)/Pt, and to cover the costs of adjusting its wage (the second
to last term on the right hand side). Finally, Tt denotes transfers/lump-sum taxes.

The optimization problem of the household involves maximizing (3.8) subject to the
budget constraint (3.9) and the demand for the household’s differentiated labor input (3.7).
The first-order condition for labor supply implies that a gross markup over the after-tax
marginal rate of substitution Ξw,t is chosen such that

Wt

Pt
= Ξw,t

1 + τ ct
1− τnt

VN,t
VC,t

,

where VN and VC are the partial derivatives of the utility function with respect to labor and
consumption, respectively.
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3.3 Government Sector

The government’s budget constraint is given by

τ ctCt + τnt
Wt

Pt
Nt = Gt + Tt , (3.10)

where Gt is exogenous government consumption and where we have suppressed aggregation
over households j for notational convenience.

The model is closed by assuming that the central bank follows a Taylor rule that reacts
to inflation and output:

Rt

R
=
(
Rt−1

R

)ρR (Πt

Π

)φRπ ( Yt
Y HP
t

)φRy1−ρR

. (3.11)

Here, 0 ≤ ρR ≤ 1 is a smoothing parameter introduced to capture the empirical evidence of
gradual movements in interest rates, Π is the target inflation rate set by the central bank,
and the parameters φRπ and φRy capture the responsiveness of the nominal interest rate
to deviations of inflation from its steady-state value and output from its model-consistent
Hodrick and Prescott (HP) filter trend Y HP

t , respectively (this specification follows Born and
Pfeifer 2014).13

3.4 Exogenous shock processes

The two exogenous processes for government spending and TFP follow AR(1)-processes with
stochastic volatility:

Ẑt = ρzẐt−1 + σzt ε
z
t (3.12)

Ĝt = ρgĜt−1 + φgyŶt−1 + σgt ε
g
t (3.13)

σzt = (1− ρσz)σ̄z + ρσzσ
z
t−1 + ησzε

σz

t (3.14)

σgt = (1− ρσg)σ̄g + ρσgσ
g
t−1 + ησgε

σg

t , (3.15)

where the εit, i ∈ {z, g, σz, σg} are standard normally distributed i.i.d. shock processes, hats
denote percentage deviations from trend, and φgy governs the output feedback to government
spending. σzt and σgt are our proxies for supply and demand uncertainty, respectively, with
εσ

z

t and εσzt being the corresponding uncertainty shocks.
13The HP filtered output gap is embedded into the dynamic rational expectations model following the

approach of Cúrdia, Ferrero, Ng, and Tambalotti (2015)
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Table 1: Model Parametrization

Parameter Description Value Target
α Capital share 0.078 Capital share of 1/3
β Discount factor 0.99 4% annualized interest rate
δ Depreciation rate 0.025 10% per year
σ Risk aversion 2 standard value
φk Cap. adj. costs 2.09 Basu and Bundick (2017)
φp Price adj. costs 140 Implied average duration of 1 year
φw Wage adj. costs 3457 Implied average duration of 1 year
θw Labor subst. ela. 21 5% steady-state markup
θp Goods subst. ela. 13 8% steady-state markup
η Leisure share 0.462 Frisch elasticity of 1
φo Overh. lab. share 0.11 Nekarda and Ramey (2013)
ψ Subst. ela. CES 0.5 Chirinko (2008)
Φ Fixed costs 0.004 0 Steady-state profits
Π Ss gross inflation 1 Zero inflation
ρr Interest smoothing 0.5 Standard value
φRπ Inflation feedback 1.5 Standard value
φRy Output feedback 0.125 Standard value
τ c Cons. tax rate 0.094 Sample mean
τn Labor tax rate 0.220 Sample mean
G/Y G/Y share 0.206 Sample mean
Y norm Output normalization 1.373 Output of 1

3.5 Equilibrium

The use of Rotemberg price and wage adjustment costs implies the existence of a representative
firm and a representative household. We consider a symmetric equilibrium in which all
intermediate good firms charge the same price and choose the same labor input and capital
stock. Similarly, all households set the same wage, supply the same amount of labor, and
will choose the same consumption and savings.

The resource constraint then implies that output is used for consumption, investment,
government spending, and to pay for price and wage adjustment costs:

Yt = Ct + It +Gt + φw
2

(
Π−1 Wt

Wt−1
− 1

)2

Yt + φp
2

(
Π−1 Pt

Pt−1
− 1

)2

Yt . (3.16)

3.6 Parametrization

Table 1 displays the parametrization of our model. The capital share α is set to one third and
the depreciation rate δ to imply an annual depreciation rate of 10 percent. The discount factor
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β = 0.99 implies an annualized interest rate of 4% in steady state. The capital adjustment
cost parameter φk is set to 2.09, the value estimated in Basu and Bundick (2017), which
implies an elasticity of the investment to capital ratio with respect to Tobin’s marginal q of
1.9.14

The price adjustment cost parameter φp is chosen to imply the same slope of the linear
New Keynesian Phillips Curve as a Calvo model with an average price duration of 1 year
(see e.g. Keen and Wang 2007). Similarly, the wage adjustment cost parameter is chosen to
imply an average wage contract duration of 1 year (see Born and Pfeifer forthcoming). The
two substitution elasticity parameters θp and θw are set to 13 and 21, respectively, which
implies a steady-state markup of 8% and 5%. These values are close to the 5 percent markup
estimated in Altig, Christiano, Eichenbaum, and Lindé (2011).15

We consider a zero inflation steady state, i.e. Π = 1. The Taylor rule parameters are
standard values in the literature with a moderate degree of interest smoothing and output
feedback.16 The risk aversion parameter is set to σ = 2. The leisure share in the Cobb-Douglas
utility bundle η is set to imply a Frisch elasticity of 1.17 We set the share of overhead labor
to 11%, following the evidence of Levitt, List, and Syverson (2013) that adding a second shift
in car manufacturing plants increases labor by 80%. Given that automobile plants run two
shifts most of the time, this means overhead labor accounts for 20/180 = 0.11 (see Nekarda
and Ramey 2013). The fixed costs Φ are set to imply 0 profits in steady state, thereby ruling
out entry and exit.18 The substitution elasticity between capital and labor is set to ψ = 0.5,
the midpoint of the estimates surveyed in Chirinko (2008). The fiscal parameters are set to
their sample mean over 1964Q1 to 2015Q4. The tax rates are computed as average effective
tax rates following Jones (2002).19

Finally, the exogenous processes are estimated via Bayesian techniques using sequential
Monte Carlo Methods.20 We employ a Sequential Importance Resampling (SIR) filter (Gordon,
Salmond, and Smith 1993) with 20,000 particles to construct the likelihood of the stochastic

14See Appendix A.2.2.
15We cannot set the price markup to 5% in the presence of overhead labor as otherwise the firms would

make losses even in the absence of additional fixed costs.
16It should be noted that the choice of monetary policy is not completely innocuous. If the central bank

puts relatively little weight on current inflation, it will tolerate large deviations of sticky prices from their
optimal target. Firms will anticipate this and react with strong precautionary pricing. For the parameter
ranges typically found in the literature, we experienced quantitative differences, but the qualitative effect we
are investigating in this paper remained unaffected.

17See Appendix A.2.1.
18Note that in contrast to e.g. Smets and Wouters (2007), these fixed costs are non-labor related fixed

costs as the latter are captured in the overhead labor share.
19While we allow tax rates to vary in the empirical analysis, we keep them fixed at their steady-state value

for the model analysis. See Appendix C for details on the construction of tax rates.
20Our approach is described in more detail in Appendix B of Born and Pfeifer (2014).
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Table 2: Prior and Posterior Distributions of the Shock Processes

Parameter Prior distribution Posterior distribution
Distribution Mean Std. Dev. Mean 5 % 95 %

G process
ρσg Beta* 0.90 0.100 0.513 0.313 0.708
ρg Beta* 0.90 0.100 0.945 0.883 0.999
ησg Gamma 0.50 0.100 0.003 0.002 0.004
σg Uniform 0.05 0.014 0.008 0.007 0.009
φgy Normal 0.00 1.000 0.028 -0.026 0.083

TFP process
ρσz Beta* 0.90 0.100 0.517 0.312 0.722
ρz Beta* 0.90 0.100 0.773 0.692 0.855
ησz Gamma 0.50 0.100 0.002 0.002 0.003
σz Uniform 0.05 0.014 0.007 0.006 0.008

Note: Beta* indicates that the parameter divided by 0.999 follows a beta
distribution.

volatility processes. Draws from the posterior are generated using the Metropolis-Hastings
algorithm. We generate a Monte Carlo Markov Chain with 205,000 draws of which 5000
are used as a burn-in.21 As the proposal density, we use a multivariate normal distribution
with the identity matrix as the covariance matrix, scaled to achieve an acceptance rate of
about 25 percent. Smoothed objects are constructed using the backward-smoothing routine of
Godsill, Doucet, and West (2004) with 20,000 particles for the smoother. To construct output,
government spending, and TFP deviations from trend, a one-sided HP-filter (λ = 1600) is
used. For TFP, we cumulate the utilization-adjusted TFP series constructed by Fernald
(2012). Table 2 displays the prior and posterior distributions, while Figure A.1 shows the
smoothed volatilities.

3.7 Model Impulse Responses

As outlined in Section 2, precautionary price and wage setting in response to an increase in
uncertainty lead to an increase in both price and wage markups. Thinking about a stylized
labor market as depicted in the schematic diagram shown in Figure 2, this should cause both
the labor demand and supply curves to shift to the left, resulting in an overall decrease in
hours worked and a reduction in aggregate output Yt.

21The Raftery and Lewis (1992) convergence diagnostics with quantile q = 0.025, precision r = 0.01, and
probability of attaining this precision s = 0.95 suggests that this is sufficient for convergence.
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Figure 2: Stylized labor market. Notes: Labor supply is characterized by the condition that
the log marginal rate of substitution (mrs) is equal to the log real wage, while
the labor supply curve is characterized by the log marginal product of labor (mpl)
being equal to the log real wage. The point SSeff denotes the efficient steady
state where mrs and mpl are equal. The presence of a wage and price markup
(ξw and ξp) drives a wedge between the two curves and the real wage.

We can now feed an uncertainty shock into our general-equilibrium model to study the
effects on markups and real activity in a richer model environment. Figure 3 displays the
impulse responses to a four-standard deviation government spending (i.e. demand) uncertainty
shock εσgt (top panel) and to a four-standard deviation technology (i.e. supply) uncertainty
shock εσzt (bottom panel).22 We denote the log wage markup with ξwt ≡ log(Ξw,t) and the log
price markup with ξpt ≡ log(Ξp,t). We see that, indeed, an increase in uncertainty leads to
an increase in both price and wage markups and a decline in output. When the shock dies
out, the markups converge back to their pre-shock values as does output. We do not show
here the response of the real wage, which increases. As the labor market diagram in Figure 2
makes clear, its theoretical response is ambiguous, depending on whether the wage or price
markup response is stronger, increasing for the former and falling for the latter.

A necessary ingredient for the negative response of output to an uncertainty shock is the
presence of at least one type of nominal rigidity. Figures A.2 and A.3 in the appendix show
the IRFs with only price and wage rigidity, respectively. In both cases, there is a drop in

22IRFs are generalized impulse response functions, shown as percentage deviations from the stochastic
steady state, computed using third-order perturbation techniques in Dynare 4.5.3 (Adjemian, Bastani,
Juillard, Karamé, Maih, Mihoubi, Perendia, Pfeifer, Ratto, and Villemot 2011) with the pruning algorithm
of Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2018). We use four-standard deviation shocks as
this is the typical shock size used in the empirical literature, because it is about the increase in uncertainty
proxies during the Great Recession.
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Figure 3: Model IRFs to a four-standard deviation government spending volatility shock
(Panel a) and to a technology volatility shock of the same size (Panel b). Notes:
Theoretical responses measured in percentage deviations from the stochastic
steady state.

output, which is even more pronounced in the case of price stickiness only. That indicates a
significant interaction effect between both types of rigidity as wage stickiness limits the firms’
cost risk. Finally, A.4 shows the IRFs in the model without nominal rigidities. In this case
the precautionary labor supply motive dominates and output increases.

3.8 Constructing aggregate markups

Our ultimate goal is to compare the theoretical model IRFs with their empirical counterparts.
To this end, we need to construct aggregate markups from the data.

Using the intratemporal first-order conditions of the model, empirical measures of both
price and wage markups can be constructed in a business cycle accounting-style exercise.
Using the Cobb-Douglas felicity function from Section 3, the wage markup over the marginal
rate of substitution satisfies

Ξw,t
1− η
η

Ct
1−Nt

= 1− τnt
1 + τ ct

Wt

Pt
. (3.17)

Expanding this fraction and taking logs, ξwt ≡ log(Ξw,t) can be computed from

ξwt = log
(

1− τnt
1 + τ ct

)
+ log

(
WtNt

PtYt

)
+ log

(
Yt
Ct

)
− log

(
1− η
η

)
+ log

(1−Nt

Nt

)
, (3.18)
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Figure 4: Cyclical component of the price markup ξpt (top panel) and of the wage markup
ξwt (bottom panel) over time. Blue solid lines: respective markup; red dashed
line: GDP. Grey shaded areas denote NBER recessions.

where the second term on the right is the labor share.
The firm-side price markup ξpt ≡ log(Ξp,t) can be constructed using the CES-production

function (3.1) as (see Appendix B for details)

ξpt = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
Zt + 1

ψ
log

(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
. (3.19)

To compute both price and wage markups, all that is needed are aggregate time series on
output, consumption, taxes, labor-augmenting technology, and various labor market variables
like hours worked and wages. On the household side we follow Karabarbounis (2014) and
rely on broad, encompassing measure of hours, employment, and population that takes the
substantial U.S. military employment into account (see Cociuba, Prescott, and Ueberfeldt
2012) when measuring the marginal rate of substitution. On the firm side, it is crucial
to correctly measure the marginal product of labor. For this purpose, we follow Nekarda
and Ramey (2013) and rely on data from the private business sector, which distinguishes
production from overhead workers. We use Fernald (2012)’s utilization-adjusted TFP measure
to back out labor-augmenting technology.23

23Appendix C describes the respective data sources used in detail.
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Figure 5: Correlation of the cyclical components of the price markup ξpt+j and the wage
markup ξwt+j with output yt. The price markup is shown for both utilization-
adjusted (blue line) and unadjusted (green line) TFP measures.

Figure 4 shows the HP-filtered (λ = 1600) markups over time. As already documented
in Nekarda and Ramey (2013), the price markup tends to have its trough during or shortly
after recessions, while its peak happens in the middle of expansions. In contrast, the wage
markup tends to peak during recessions. This finding is consistent with evidence presented
by Karabarbounis (2014), Shimer (2010), and Galí et al. (2007). The cyclical behavior of the
markups is confirmed by the cross-correlograms depicted in Figure 5. While the price markup
is acyclical, the correlation becomes negative for leads: a drop in GDP today signals an
increase in the price markup in the future. In contrast, the wage markup shows a pronounced
countercyclicality.

4 Aggregate evidence

In this section, we investigate the responses of aggregate price and wage markups to exogenous
uncertainty shocks. We first consider a model-consistent uncertainty measure in the form of
smoothed uncertainty shocks from the particle smoother (see Section 3.6), before turning to
broader measures of aggregate uncertainty.

4.1 Model-consistent uncertainty measures

For our first approach, we use the median quarterly smoothed uncertainty shocks et ∈
{ε̂σgt , ε̂σzt } (where hats denote estimates from the smoother) from the estimated TFP and
government spending processes that drive our DSGE model (see Section 3.4). These shocks
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are included in a local projection model (Jordà 2005) of the form

xt+h = αh + βht+ γhet + ηt,h . (4.1)

Here, γh denotes the response of a particular variable xt+h at horizon h to an exogenous
variation in uncertainty at time t, et.24 In our baseline xt+h stands for either price or wage
markupor GDP. αh and βht are a constant and a linear time trend, respectively. The error
term ηt,h is assumed to have a zero mean and strictly positive variance. We estimate model
(4.1) using OLS where, in order to improve the efficiency of the estimates, we include the
residual of the local projection at t+ h− 1 as an additional regressor in the regression for
t+ h (see Jordà 2005).25

We view these local projections as first tentative evidence. The uncertainty shocks are
derived under the assumption that all heteroskedasticity in the residuals is the result of
exogenous uncertainty shocks. Insofar as there is endogenous uncertainty in these objects
(see e.g. Caldara, Fuentes-Albero, Gilchrist, and Zakrajšek 2016; Plante, Richter, and Throck-
morton 2018), we would be mis-measuring the shocks. We will turn to more sophisticated
identification schemes below. Figure 6 presents the results to our model-consistent uncertainty
measures. As expected, an increase in technological uncertainty is associated with a drop
in GDP. However, the conditional markup response in the data partially differs from the
one predicted by the model. On impact, the price markup falls. In contrast, the DSGE
model implies that the price markup quickly peaks and then declines back to its stochastic
steady state as the effect of price stickiness subsides over time.26 The movement of the wage
markup squares better with the model: it increases after an uncertainty shock and then
slowly declines back to steady state.

The evidence after a government spending uncertainty shock is not as conclusive, but also
does not lend strong support to the model mechanism.

4.2 Two-step approach using broad macro uncertainty measure

The first set of impulse responses from the model-consistent uncertainty measures tentatively
suggests that the conditional behavior of the price markup is not consistent with the model
prediction. However, the bands were relatively wide. This is not entirely surprising as TFP
measures are notoriously noisy and government spending shocks are hard to identify. Thus,

24By taking the results from the smoother as given, we abstract from parameter uncertainty in the first
stage.

25As shown in Pagan (1984), the standard error estimate on the residual is consistent.
26This conditional markup response is consistent with the conditional comovement Nekarda and Ramey

(2013) found after other types of shocks, which also contradicted the sticky price model.
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Figure 6: Local projection responses to model-consistent uncertainty shocks. Notes: Shaded
areas denote 90% confidence intervals based on Newey-West standard errors.

we would like to rely on an uncertainty proxy that is still closely linked to the model concept
of uncertainty, but at the same time has a better signal-to-noise ratio. A measure satisfying
this criterion has recently been proposed by Jurado et al. (2015). Their measure is closely
linked to the concept of forecast error uncertainty employed in business cycle models, but
relies on a broad information set to extract the signal.27 We think that this is currently the
broadest and at the same time cleanest uncertainty measure available.28

We are ultimately interested in the dynamic response of markups to innovations, or
“shocks”, to uncertainty. Given that the JNL uncertainty measure is available at monthly
frequency while we only have quarterly markup data, we will employ a two-step procedure
following Kilian (2009) and Born et al. (2018). In the first step, to identify structural

27Jurado et al. (2015) stress that in order to measure uncertainty, it is important to purge the predictable
component of volatility. They estimate a factor-based forecasting model on 279 monthly economic and
financial time series. Given their estimated factors, they then compute forecast errors for 132 of these variables
and subsequently use the forecast errors to construct an uncertainty time series for each variable based on
the assumption that these follow a stochastic volatility process. Their macroeconomic uncertainty measure is
the common factor of the uncertainty connected to the individual variables. We use their one-period ahead
forecast measure (i.e. h = 1, not to be confused with the forecast horizon in the local projection).

28Measures like the economic policy uncertainty index by Baker et al. (2016) have a very narrow focus,
while financial market-based measures like the VIX or realized (return) volatility are likely to be contaminated
by changes in risk aversion and financial market conditions (see e.g. Bekaert, Hoerova, and Duca 2013; Stock
and Watson 2012; Caldara et al. 2016). We will employ these alternative measures in the robustness section.
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uncertainty shocks, we follow Bloom (2009) and Jurado et al. (2015) and employ a Cholesky-
ordering within a monthly VAR framework. The structural shocks are then aggregated to
quarterly frequency by averaging the monthly shocks and, in the second step, fed into a
local projection as in (4.1).29 We pursue this approach, because the monthly time horizon of
the VAR makes the recursive timing assumption underlying the identification scheme more
plausible than in a quarterly VAR.

Our sample ranges from 1964M1 to 2015M12. The variable vector Xt in our VAR contains
1) real industrial production, 2) total non-farm employment, 3) real personal consumption
expenditures, 4) the personal consumption expenditure deflator, 5) real new orders, 6) the
manufacturing real wage, 7) hours worked in manufacturing, 8) the Wu and Xia (2016)
shadow federal funds rate,30 9) the S&P 500 Index, 10) M2 money growth, and 11) the 1-step
ahead JLN uncertainty proxy.31 Formally, we estimate the following VAR using OLS

Xt = µ+ αt+ A(L)Xt−1 + νt , (4.2)

where and µ and αt are a constant and time trend, respectively, A(L) is a lag polynomial of
degree p=6, and νt iid∼ (0,Σ). In terms of identification, we assume a lower-triangular matrix
B, which maps reduced-form innovations νt into structural shocks εt = Bνt.

After averaging the monthly shocks and feeding them into the local projection model,
the resulting IRFs are plotted in Figure 7. They corroborate our previous finding. After an
uncertainty shock, the wage markup increases significantly, consistent with a precautionary
wage setting motive as in the model. The same does not apply to the price markup, which
tends to decline.

4.3 Mixed-frequency VAR

While the two-step approach does not impose cross-equation restrictions and is therefore
more flexible and robust than a VAR, it comes at the disadvantage of not making full use of
high-frequency information. As mentioned before, the constructed markups are only available
at quarterly frequency. To use all available monthly information on the other variables, we
assume that we cannot observe the monthly realizations of the markup measure and treat
these data as missing values. Following the Bayesian VAR framework outlined in Eraker
et al. (2015), we can then employ a Gibbs sampler to deal with these missing observations by

29Using the average follows Kilian (2009). Readers worried about time aggregation are referred to the
mixed-frequency VAR below.

30We use this measure to alleviate concerns about the effective zero lower bound introducing a nonlinearity
the VAR is not being able to capture. Using the effective federal funds rate instead yields very similar results.

31See Appendix D.2 for a detailed description of the macro dataset and the transformations used for the
respective variables.
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Figure 7: Local projection responses to a JLN-based uncertainty shock in the two-step
model. Notes: Shaded areas denote 90% confidence intervals based on Newey-West
standard errors.

sampling the missing data from their conditional distribution.
Our sample again ranges from 1964M1 to 2015M12, on which we estimate the 11-variable

VAR in equation (4.2) with p = 6, but where we add our quarterly markup measures as an
additional twelfth variable observed every third month. Consistent with the model, we order
the markups after the respective uncertainty measure so that markups can react on impact.
We use a shrinking prior of the Independent Normal-Wishart type (Kadiyala and Karlsson
1997), where the mean and precision are derived from a Minnesota-type prior (Litterman
1986; Doan, Litterman, and Sims 1984).32 In the Gibbs sampler, we use 25,000 draws, of
which we discard the first 5,000 draws as a burn-in.33 We use 90% highest posterior density
intervals (HPDIs) based on 1000 random posterior draws after burn-in.

Figure 8 presents the impulse responses of the wage and price markup following an
economic uncertainty shock.34 As with the model-consistent measure and the two-step
approach, wage markups increase after an uncertainty shock but price markups fall.

Figure 9 displays the total markup or “labor wedge”, i.e. the sum of the price and wage
markup. During the first few months, it is dominated by the price markup response and
slightly falls, before it becomes dominated by the wage markup and increases subsequently.
As the figure shows, after an uncertainty shock the real wage increases while hours worked
fall. This response is perfectly consistent with a situation where the wage markup increases
while the price markup stays flat (see the stylized labor market diagram in Figure 2).35

While the model does not predict the same hump-shaped movement, it predicts the same
countercyclical movement of the wage markup. At least in that regard, the data is consistent
with the markup channel in New Keynesian models and the role of uncertainty shocks more

32See Appendix D.1 for details.
33The Raftery and Lewis (1992) convergence diagnostics suggests that this is sufficient for convergence.
34Figure D.5 presents IRFs of all variables to an uncertainty shock.
35The model with only rigid wages also delivers an increases in the real wage and a drop in hours worked.
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Figure 8: IRFs to JLN-based uncertainty shock in the mixed-frequency VAR. Notes: Bands
are pointwise 90% HPDIs. The respective markups are rotated into the VAR as
the 12th variable.

generally. Empirically, most of the movement in the labor wedge seems to come from this
margin. However, from the vantage point of the basic New Keynesian model with only sticky
prices, the price markup response presents a challenge.

We also compute the posterior unconditional forecast error variance share explained
by the identified uncertainty shock. Uncertainty shocks account for about 13% of output
fluctuations, 15% of the wage markup, but only 8% of the price markup. Taken together,
uncertainty shocks account for 11% of total labor wedge fluctuations (see Table D.3 in the
appendix).
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Figure 9: IRFs to JLN-based uncertainty shock in the mixed-frequency VAR including the
total markup. Notes: Bands are pointwise 90% HPDIs. The total markup is
computed as the sum of the price and wage markup.

4.4 VAR-based robustness checks

While our results seem to be robust across different time-series approaches, one might wonder
whether they depend on the ordering of variables in the VAR, the chosen uncertainty proxy, or
the assumptions made to construct markups. We will address these concerns in the following.

Bloom (2009) VAR

Bloom (2009) considers a different, 8-variable VAR where uncertainty is ordered second and
measured by stock market volatility. In a first step, we check whether using the VIX instead
of the JNL measure makes a difference in our VAR 11+1. Figure 10 confirms that the results
are robust to this change.

Next, we investigate the original Bloom 8-variable VAR with uncertainty, measured by
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Figure 10: IRFs to VIX-based uncertainty shocks in the mixed-frequency 11+1-VAR. Notes:
Bands are pointwise 90% HPDIs.

the VIX, ordered second. We add our markup measure as the ninth variable.36 Results from
the mixed-frequency estimation are shown in Figure 11. They are very similar to the baseline
results, indicating that the ordering of the uncertainty measure is not crucial for our results.37

Alternative markup measurements

In our baseline price markup measure, we employ the utilization-adjusted TFP measure of
Fernald (2012), which results in an acyclical price markup. As a robustness check, we also
use Fernald’s utilization-unadjusted TFP measure. This results in a strongly countercyclical
price markup (see the green line in the left panel of Figure 5), which, as Nekarda and Ramey
(2013) note, is very similar to the countercyclical markup measure constructed in Galí et al.
(2007). Estimating our mixed-frequency VAR including this alternative price markup measure
yields the IRFs reported in Panel (a) of Figure 12. The drop in the price markup is less
pronounced than in the baseline, but there is still no robust evidence for an increase.

We also check the robustness of the wage markup response with respect to the preference
specification used. Instead of the Cobb-Douglas type felicity function used in the baseline, we
construct the wage markup using separable isoelastic preferences of the type log(Ct)−ψN1+1/η

t ,
36See Appendix D.3 for a detailed variable listing and Figure D.6 for a full set of IRFs.
37Figure D.7 shows that the IRFs when using the Jurado et al. (2015) measure ordered second in the VAR

are similar.
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Figure 11: IRFs to uncertainty shocks measured via the VIX ordered second in the mixed-
frequency 8+1-VAR. Notes: Included variables as in Bloom (2009) plus markup
measure. Bands are pointwise 90% HPDIs.
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Figure 12: IRFs to JLN-based uncertainty shocks in the mixed-frequency 11+1-VAR. Notes:
Bands are pointwise 90% HPDIs.

where we again set the Frisch elasticity η to one.38 This results in a wage markup that is more
volatile over the business cycle (Karabarbounis 2014). The results in Panel (b) of Figure 12

38The labor disutility parameter ψ only affects the constant in our markup measure and therefore can be
set to 1 without loss of generality.
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show a somewhat stronger increase in the wage markup with this measure, but are otherwise
similar to the baseline.
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Figure 13: IRFs of Cobb-Douglas production function-based price markups to JNL-based
uncertainty shocks in the mixed-frequency 11+1-VAR. Notes: left panel: based
on total compensation in non-financial business sector; middle panel: based on
labor share of production and supervisory workers in private business sector;
right panel: based on labor share production workers only in private business
sector. Bands are pointwise 90% HPDIs.

With respect to the price markup, one might worry that the correction for overhead labor,
fixed costs, and a CES production function might be overdoing things. Figure 13 therefore
reports the responses of three “conventional” markup measures based on a setup with no
fixed costs and a Cobb-Douglas production function. In this case, the aggregate price markup
corresponds to the inverse labor share. The left panel of Figure 13 displays the response
of the price markup for the labor share based on total compensation in the non-financial
business sector (available from the NIPA tables). The middle panel uses the labor share
of production and supervisory workers in the private business sector, while the right panel
is based on production workers only in the private business sector, i.e. excludes overhead
workers (both available from the BLS). In all three cases, the price markup significantly drops
after an uncertainty shock. The first two measures, which are based on all workers, tend to
recover somewhat more quickly than the third measure, which excludes overhead labor. But
even for the first two measures, we do not find a significant increase of the price markup
within the first three years.

Other uncertainty measures

Recently Caldara et al. (2016) and Ludvigson, Ma, and Ng (2015) have argued that it is
important to distinguish between macroeconomic and financial uncertainty, with the latter
driving the former. In Figure D.8 we therefore display the VAR-IRFs in response to the
Ludvigson et al. (2015) financial uncertainty measure. The results are similar to the ones of
the Jurado et al. (2015) macro uncertainty measure.
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Table 3: Short-run response of BKM annual price markup to aggregate macroeconomic
uncertainty shock

(1) (2) (3) (4) (5) (6) (7)
h=0 0.340 0.198 0.288 0.490*** -0.003 -0.241 -0.145

(0.482) (0.672) (0.393) (0.017) (0.314) (0.575) (0.310)
h=1 1.616*** 1.787*** 1.561 0.377 1.081* 1.220* 0.818

(0.561) (0.737) (1.015) (1.889) (0.651) (0.675) (1.394)
Hours All workers SE SE SE SE SE SE
MPN Agg. Agg. SE SE Uninc SE SE
Cons. PCE PCE PCE +CE Adj. PCE PCE PCE

Weight. Equal SE in CPS SE in CPS SE in CPS SE in CPS All in CPS Emp.
Notes: Responses are in percent. Regressions based on years 1987-1993 and 1996-2012. Newey-West standard
errors are in parentheses. ***, **, and * denote significance at the 1, 5, and 10 percent level, respectively.
Hours are weekly. MPN refers to how the marginal product is measured: “Agg.” denotes the NIPA labor
productivity measure, “SE” denotes self-employed income per hour, “Uninc” denotes unincorporated self-
employed income per hour. “Cons.” denotes the respective consumption measure. PCE: NIPA aggregate real
expenditures on nondurables and services. CE adjustment incorporates consumption for the self-employed
versus all persons from the Consumer Expenditure Surveys. Weighting schemes: “SE in CPS’ weights all
self-employed in the CPS equal, “All in CPS’ weights self-employed to achieve mirror industry structure of all
workers in the CPS, and “Emp.” reweights with the share of self-employed with employees (see BKM for
details).

Baker et al. (2016) have constructed an index of economic policy uncertainty. It is more
narrow than the Jurado et al. (2015) uncertainty measure in that it only captures the political
dimension of uncertainty, but is at the same time broader in that it not only captures risk,
but also Knightian uncertainty. Despite these differences, the responses of the respective
markups, displayed in Figure D.9, show a familiar pattern: the wage markup increases while
the price markup falls.39

4.5 Price markup based on self-employed

The previous analyses have relied on a measure of average hourly earnings, which would be
the appropriate measure of firms’ marginal cost of labor if transactions took place in perfectly
competitive spot markets. But due to implicit long-term contracts between firms and workers
this measure of earnings may not play an allocative role. For this reason, BKM have recently
investigated the labor wedge of self-employed people along the intensive margin. Arguably,
no wage rigidities and labor market distortions affect their decision to supply labor to their
own business. In this case the wage markup is zero and the labor wedge coincides with the
price markup. The share of self-employed in nonagricultural industries is roughly 10%. The

39In this case, due to non-availability of the EPU measure, the sample only starts in 1985, potentially
explaining the non-significant drop in industrial production.
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BKM data is based on the Annual Social and Economic Supplements to the CPS from 1987
to 2012 with a gap in 1994 and 1995 due to a CPS sample redesign. The wedge construction
assumes separable isoelastic preferences with a Frisch elasticity of unity and an intertemporal
elasticity of substitution of 0.5. In Table 3 we investigate the effect of uncertainty shocks
on the BKM annual intensive margin labor wedges during the first two years after the
shock. The aggregate uncertainty shock is constructed as the annual average of the monthly
uncertainty shocks estimated using the VAR (4.2). The first column displays the results based
on hours, labor productivity, and consumption of all workers, not just the self-employed.40

The response therefore needs to be interpreted as the total markup. Consistent with our
previous findings based mostly on quarterly NIPA data, it shows a delayed increase. The
next columns subsequently replace the aggregate components of the wedge computation by
measures specific to the self-employed. Most importantly, starting with the second column
the total hours measure is replaced by the one for the self-employed. The resulting wedge can
therefore be interpreted as the price markup. As the second column shows, in this case we
find an significant increase of the price markup after one year, consistent with the markup
channel. The third column then replace the aggregate labor productivity measure by one
for the self-employed, that is business income divided by hours. This change causes the
price markup increase to become insignificant. The reason may be that, as argued in BKM,
this measure tends to understate the cyclicality of the labor wedge. The fourth column
adjusts the previously used aggregate consumption measure by a measure of consumption for
the self-employed derived from the CPS. Self-employed consumption is more cyclical, which
causes the estimated price markup to increase significantly on impact, but revert more quickly.
The fifth column again uses aggregate consumption, but considers only non-incorporated
businesses to avoid issues with reporting of business income as corporate profits. We find
a marginally significant increase in the price markup after one year. Finally, columns (6)
and (7) use a different weighting scheme. Column (6) reweights observations by industry
in order to achieve a weighting of self-employed by industry that mirrors the one of all
employees.41 This assures a similar aggregate cyclical exposure of the self-employed wedge
measure as for the whole worker population. This reweighting hardly makes a difference. We
still only find a marginally significant increase in the wedge after one year. Finally, column
(7) reweights observations by the share of self-employed with employees. The goal is to give
less weight to self-employed people with that might just contract with one employer and are
thus quasi-employees with all associated rigidities. In this case, the price markup increase

40For details on the construction of the respective wedges, we refer the reader to BKM.
41For example, if self-employment is twice as likely in construction than overall, self-employed in construction

only receive a weight of one half.
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after one year becomes insignificant.
Summarizing, estimating the response of the price markup based on an annual dataset of

self-employed persons yields some tentative evidence for the presence of the markup channel.
One year after the shock, the point estimate is consistently positive. However, the significance
of this increase in the price markup depends on the exact specification used.

5 Industry-level evidence

In the previous section, we have documented that there is only mixed empirical evidence for
price markup increases after uncertainty shocks at the aggregate level. In this section we dig
deeper and investigate whether the model-predicted price markup response may simply be
hidden by heterogeneity in price stickiness at the industry level. The results in this section
need to be interpreted with caution. First, the markup channel provides clear-cut predictions
for aggregate markups based on aggregate equilibrium conditions, but is strictly speaking
silent on what happens at a more disaggregated level. Aggregation from the average markup
of firms or industries to the markup of the average firm is not trivial (see e.g. De Loecker
and Eeckhout 2018). However, we expect this issue to be less problematic if aggregation is at
the industry rather than the firm level.42 Second, input-output-relationships between sectors
can lead to non-trivial interactions with nominal rigidities (see e.g. Pasten, Schoenle, and
Weber 2018). We abstract from this issue as it is beyond the scope of the present paper,
but think it deserves more future attention. Despite these limitations, we still consider the
industry-level analysis to be an additional useful piece of evidence.

5.1 Constructing industry-specific markups

Based on the NBER CES Manufacturing Industry Database (Becker, Gray, and Marvakov
2016; Bartelsman and Gray 1996) we construct price markups and output measures at the
four digit SIC-industry level (see Appendix C.5 for details). As we have argued before, a
robust result of representative agent models with convex adjustment costs is that negative
output effects of uncertainty are directly related to nominal stickiness. As a first pass at
the data, we therefore estimate the contemporaneous response of real output for each SIC4
industry and plot it against average price durations for these industries. To compute this
response, for each industry we regress the log of real output yt on the aggregate uncertainty

42The different level of aggregation is also the reason why BKM’s industry-level analysis does not reveal a
trend in the average markup, while De Loecker et al. (2018)’s firm-level analysis does.
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Figure 14: Implied average price duration at the SIC4 industry-level vs. output effects
of aggregate uncertainty shock. Notes: Implied average price durations are
based on Petrella and Santoro (2012); output effect estimates derived from
industry-specific local projection on mean annual JNL shocks from VAR-11.

shock, a constant, and a linear time trend:

log(yt) = α0 + α1t+ α2ēt + εt . (5.1)

Again, the aggregate uncertainty shock ēt is the annual average of the monthly uncertainty
shocks estimated using the VAR (4.2). Implied average price durations are computed for SIC4
industries based on the estimated New Keynesian Phillips Curves in Petrella and Santoro
(2012).43 Figure 14 plots the resulting estimates α̂2 against average price durations. There
does not seem to be a linear relationship between price stickiness and the output effects of
uncertainty shocks. The regression line is flat and the slope coefficient is insignificant at the
5% level.

5.2 Regression evidence

As price stickiness per se does not seem seem to be related to the output effects of uncertainty,
we now investigate the markup channel itself. Specifically, we run a panel version of the local

43For that purpose, we translate their estimated slope of the New Keynesian Phillips Curve into a Calvo
price duration parameter, using β = 0.99.
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projection (4.1)
xi,t+h = αi,h + βi,ht+ γhēt + ηi,t+h . (5.2)

Again, γh denotes the response of a particular variable xt+h at horizon h to an exogenous
variation in uncertainty at time t, ēt, where xt+h is either the industry-specific price markup
or industry-specific real output. αi,h and βi,ht are industry-specific constant and time trend,
respectively. Given the short annual panel, we restrict ourself to h = 0 and h = 1. The results
of the pooled OLS regression are shown in Table 4. Standard errors are robust to serial and
cross-sectional correlation based on the approach Driscoll and Kraay (1998). Qualitatively,
the results look quite similar to the aggregate evidence. Industry-level output (first column)
declines after a one-standard deviation uncertainty shock. While the price markup based on
a CES production function and production-worker compensation shows an initial, marginally
significant increase (which disappears after year), markups constructed using all workers
(column [2]) and a Cobb-Douglas production function (column [3]) fall (insignificantly) on
impact.

In a final robustness check, we use price markups constructed by BKM based on the share
of intermediate inputs. Arguably, the markup measured along the intermediate inputs margin
is less affected by the type of implicit contracting that may make wages not allocative.44

These markups, based on the KLEMS database, are available for 60 sectors, 42 of those
outside of manufacturing, on an annual basis from 1987 to 2012. The results are shown in
the last column of Table 4 and corroborate our earlier findings of no consistent evidence for a
price markup increase after uncertainty shocks.

44Following the evidence in BKM that their measured markup does not contain a trend, we do not include
a trend in the regression.
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Table 4: Short-run response of industry-level price markup to aggregate macroeconomic
uncertainty shock

Output Markup
[1] [2] [3] [4]

h=0 −1.45 1.61∗ −0.10 −0.45 −0.44
(1.73) (0.94) (0.36) (0.41) (0.37)

h=1 −3.13∗ 0.66 −0.31 −0.24 0.78
(1.20) (0.68) (0.24) (0.20) (0.67)

Sectors 459 451 458 458 60
Observations 21463 21197 21416 21416 1500

Notes: Responses are in percent. Markup [1]: based on CES production function and production-worker
compensation; markup [2]: based on CES production function and all-worker compensation; markup [3]:
based on Cobb-Douglas production function and production-worker compensation; markup [4]: markup based
on BKM intermediates share. Driscoll-Kray standard errors in parentheses. ***, **, and * denote significance
at the 1, 5, and 10 percent level, respectively.

6 Conclusion

The question of the markup channel as an empirically plausible transmission mechanism
of uncertainty shocks into the macroeconomy is highly relevant for the policy debate given
that the supposedly negative influence of policy uncertainty has become a recurring theme
in the political discourse. With much of the model-based evidence featuring this supposed
transmission mechanism it is of paramount importance to subject it to a rigorous empirical
assessment. We construct a DSGE model to measure markups and generate theoretical
markup responses following uncertainty shocks. We then provide empirical evidence on the
response of markups to uncertainty shocks. Contrary to the model’s prediction, price markups
do not consistently increase. However, wage markups increase after uncertainty shocks. Our
results suggest that sticky wages play a more important role in the transmission of aggregate
uncertainty shocks to economic variables than sticky prices.45

45See also Barattieri, Basu, and Gottschalk (2014), Daly and Hobijn (2014), and Galí (2011) on the
importance of sticky wages.
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A Theoretical Model

A.1 Model Equations

The model equations after imposing a symmetric equilibrium are given by:

1. Production function:

Yt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1

− Φ (A.1)

2. Firm FOC for renting Nt:
Ξp,t

Wt

Pt
= MPLt , (A.2)

3. Definition marginal product of labor

MPLt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1−1 (1− α) (Zt (Nt −N o))

ψ−1
ψ

Nt −N o
,

(A.3)
which, in the presence of no overhead labor and fixed costs, simplifies to

MPLt = (1− α) (Zt)
ψ−1
ψ

(
Yt
Nt

) 1
ψ

4. Firm profits:
Dt = Yt −Nt

Wt

Pt
− It −

φP
2
(
Πt − Π̄

)2
Yt (A.4)

5. Firm FOC for renting Kt:
Ξp,tR

K
t = MPKt , (A.5)

6. Definition marginal product of capital

MPKt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1−1

αK
ψ−1
ψ

t

Kt

(A.6)

which, in the presence of no fixed costs, simplifies to

MPKt = α
(
Yt
Kt

) 1
ψ
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7. Firm FOC for Pt:

φp

[
Π−1 Pt

Pt−1
− 1

]
Π−1 Pt

Pt−1
= (1− θp) + θpΞ−1

p,t

+ φpEt
{
Mt+1

Yt+1

Yt

[
Π−1Pt+1

Pt
− 1

] [
Π−1Pt+1

Pt

]}
,

(A.7)

where Mt is the stochastic discount factor defined below.

8. Firm FOC for capital:

qt = Et
{
Mt+1

(
RK
t+1 + qt+1

(
1− δ − φK

2

(
It+1

Kt+1
− δ

)2

+ φK

(
It+1

Kt+1
− δ

)
It+1

Kt+1

))} (A.8)

9. Firm FOC for investment:
1
qt

= 1− φK
(
It
Kt

− δ
)

(A.9)

10. Definition value function:

Vt = (Cη
t (1−Nt)1−η)1−σ

1− σ + βEtVt+1 (A.10)

11. Definition marginal utility of wealth:

λt(1 + τ ct ) = VC,t , (A.11)

12. Partial derivative of lifetime utility with respect to consumption:

VC,t = η
1
Ct

(
Cη
t (1−Nt)1−η

)1−σ
(A.12)

13. FOC with respect to W:

0 = VNt + λt

[
(1− θw)(1− τnt )Nt

Wt

Pt
− φw

(
Π−1 Wt

Wt−1
− 1

)
Wt

ΠWt−1
Yt

]

+ βλt+1

[
φw

(
Π−1Wt+1

Wt

− 1
)

Π−1Wt+1

Wt

Yt+1

]
,

(A.13)

14. Partial derivative of lifetime utility with respect to labor:

VN,t = −(1− η) 1
1−Nt

(
Cη
t (1−Nt)1−η

)1−σ
(A.14)
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15. Definition stochastic discount factor:

Mt+1 ≡
∂Vt
∂Ct+1
∂V
∂Ct

1 + τ ct
1 + τ ct+1

= β
1 + τ ct

1 + τ ct+1

(
Cη
t+1(1−Nt+1)1−η

Cη
t (1−Nt)1−η

)1−σ (
Ct
Ct+1

)
(A.15)

16. Euler Equation
1 = RtEt

{
Mt+1Π−1

t+1

}
(A.16)

17. Taylor Rule:
Rt

R
=
(
Rt−1

R

)ρR (Πt

Π

)φRπ ( Yt
Y HP
t

)φRy1−ρR

. (A.17)

18. Law of motion for capital:

Kt+1 =
(

1− δ − φK
2

(
It
Kt

− δ
)2)

Kt + It (A.18)

19. Definition of model-consistent HP-filter output gap:

Y HP
t (1 + 6× 1600) + Y HP

t−1 (−4× 1600) + EtY
HP
t+1 (−4× 1600) + Y HP

t−2 × 1600 + EtY
HP
t+2 1600

= Yt(6× 1600) + Yt−1(−4× 1600) + EtYt+1(−4× 1600) + Yt−11600 + EtYt+11600
(A.19)

20. Budget constraint household after imposing that Bt/Pt = 0 ∀ t:

(1 + τ ct )Ct = (1− τnt )Wt

Pt
Nt + Ct −

φw
2

(
Π−1 Wt

Wt−1
− 1

)2

Yt + Tt +Dt (A.20)

21. Budget constraint government:

τ ctCt + τnt
Wt

Pt
Nt = Gt + Tt (A.21)

These 21 equations define the evolution of the following 21 variables: Ct, It, Kt,Dt, λt,
Mt, MPLt, MPKt, Nt,Πt, qt, Rt, R

K
t , Tt, Vt, VC,t, VN,t,

Wt

Pt
,Ξp,t, Yt, Y

HP
t

Finally, the exogenous processes for Ẑt, σzt , Ĝt, and σgt are given by

Ẑt = ρzẐt−1 + σzt ε
z
t (A.22)

Ĝt = ρgĜt−1 + φgyŶt−1 + σgt ε
g
t (A.23)

σzt = (1− ρσz)σ̄z + ρσzσ
z
t−1 + ησzε

σz

t (A.24)

σgt = (1− ρσg)σ̄g + ρσgσ
g
t−1 + ησgε

σg

t (A.25)
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Note that for the purpose of model simulations, we set τ ct = τ c and τnt = τn.

A.2 Additional Derivations for Model Calibration

A.2.1 Frisch Elasticity

This section shows how to compute the Frisch elasticity of labor supply for our model. The
resulting expression will be used in steady-state computations to determine the weight of
leisure in the Cobb-Douglas felicity function, i.e. when determining η. As shown in e.g.
Domeij and Floden (2006), the Frisch elasticity ηλ can be computed from:

ηλ = UN (C,N)(
UNN (C,N)− U2

CN (C,N)
UCC

(C,N)
) 1
N

(A.26)

For the felicity function

U (C,N) =

(
Cη (1−N)1−η

)1−σ

1− σ = Cη(1−σ) (1−N)(1−η)(1−σ)

1− σ , (A.27)

we get

UN =− (1− η) (Cη)1−σ (1−N)(1−η)(1−σ)−1 = − (1− η) (1− σ) U (C,N)
(1−N) (A.28)

UNN = (1− η) (1− σ) ((1− η) (1− σ)− 1) U (C,N)
(1−N)2 (A.29)

UC =ηCη(1−σ)−1 (1−N)(1−η)(1−σ) = η (1− σ) U (C,N)
C

(A.30)

UCC =η (η (1− σ)− 1) (1− σ) U (C,N)
C2 (A.31)

UCN =− η (1− η) (1− σ)Cη(1−σ)−1 (1−N)(1−η)(1−σ)−1

=− η (1− η) (1− σ) (1− σ) U (C,N)
C (1−N) (A.32)

After a lot of tedious algebra, we get that

ηλ = UN (C,N)(
UNN (C,N)− U2

CN (C,N)
UCC

(C,N)
) 1
N

= 1− η (1− σ)
1− (1− σ)

1−N
N

(A.33)
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A.2.2 Investment Adjustment Costs

The FOC for investment implies

1
qt

= 1− φK
(
It
Kt

− δ
)
, (A.34)

which can be written as

log
(
It
Kt

)
= log

(
1
φK
− 1
φK

e− log qt + δ

)
(A.35)

The elasticity of the investment to capital-ratio with respect to Tobin’s q is then given by

∂ log
(
It
Kt

)
∂ log qt

= 1
1
φK
− 1

φK
e− log qt + δ

(
− 1
φK

e− log qt (−1)
)

(A.36)

In steady state, this evaluates to:

∂ log
(
I
K

)
∂ log q = 1

δ

1
φK

. (A.37)

A.3 Steady State

The stochastic discount factor, equation (A.15), in steady state evaluates to

M = β , (A.38)

while the first-order condition for investment, equation (A.9), gives Tobin’s marginal q as

q = 1 . (A.39)

Plugging this into (A.8) yields
RK = 1

β
− (1− δ) (A.40)

and the pricing FOC (A.7) in steady state implies that

Ξt,p = θp
θp − 1 . (A.41)

The wage setting FOC (A.13) implies

VN = VC
1 + τ c

[
(θw − 1) (1− τnt )W

P
N
]
. (A.42)
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Using the definition of marginal utility, (A.12),

VC = η

(
Cη (1−N)1−η

)1−σ

C
(A.43)

and the definition of VN , (A.14),

VN = −(1− η)

(
Cη (1−N)1−η

)1−σ

1−N , (A.44)

equation (A.42) reduces to

1− η
1−N θw = η

1 + τ c
1
C

[
(θw − 1) (1− τn)W

P

]
. (A.45)

With net output normalized to 1 by appropriately setting Y norm, which is determined
later, and the labor and capital share given by ℵ and 1− ℵ, respectively, we have

ℵ =
W
P
N

Y
=

W
P
N

1 ⇒ W/P = ℵ
N

(A.46)

and similarly
K = 1− ℵ

RK
. (A.47)

Equation (A.47) can be used with (A.40) to directly compute K and via the law of motion
for capital, equation (A.18), also investment

I = δK . (A.48)

Next, substituting for the real wage in (A.45) from (A.46), one obtains

1− η
η

C

1−N = θw − 1
θw

1− τn
1 + τ c

ℵ
N

. (A.49)

Solving this equation for consumption yields

C = θw − 1
θw

1− τn
1 + τ c

ℵ1−N
N

η

1− η . (A.50)

Consolidating the household and government budget constraints, equations (A.20) and
(A.21), and using equation (A.48) and the definition of firm dividends, equation (A.4), yields:

C + δK = Y = 1 . (A.51)
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Plugging in from (A.50) for consumption yields

θw − 1
θw

1− τn
1 + τ c

ℵ1−N
N

1− η
η

+ δK = 1 , (A.52)

where K is already known from (A.47).
The Frisch elasticity ηλ is calibrated to 1. From (A.33) then follows that

η = θ

1− σ

[
1− ηλ

(
1− 1− σ

θ

)
N

1−N

]
(A.53)

Plugging (A.53) into (A.52), one obtains a nonlinear equation for N :

0 = θw − 1
θw

1− τn
1 + τ c

ℵ1−N
N

1− 1
1−σ

(
1− (1− 1− σ) N

1−N

)
1

1−σ

(
1− (1− 1− σ) N

1−N

) + δK − 1 . (A.54)

This equation is solved numerically for hours worked N . Consumption immediately follows
from (A.50), η from (A.53), the real wage from (A.46), and dividends from (A.4).

Up to this point, we have assumed that net output is normalized to 1. We are now in
a position to compute the variables and parameters of the production side of our model,
including the normalizing technology factor Y norm that allowed working with Y = 1.

Fixed costs Φ are set equal to steady-state profits, which are the difference between output
and factor payments:

Φ = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1
−KRK −WN . (A.55)

With technology being in steady state, i.e. Z = 1, the firm FOCs, equations (A.2)-(A.6),
imply:

RK = ΞY norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

αK
ψ−1
ψ
−1 (A.56)

W

P
= ΞY norm

(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

(1− α) (N −N o)
ψ−1
ψ
−1 (A.57)
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so that (A.55) with N o = φoN becomes

Φ = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

− ΞY norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

αK
ψ−1
ψ

− ΞY norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

(1− α) (N −N o)
ψ−1
ψ

N

N −N o

= Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) 1
ψ−1

1− Ξ
αK

ψ−1
ψ

t + (1− α) (N −N o)
ψ−1
ψ 1

(1−φo)

αK
ψ−1
ψ

t + (1− α) (Nt −N o)
ψ−1
ψ


(A.58)

In the absence of overhead labor, this reduces to

Φ = (1− Ξ)Y norm
(
αK

ψ−1
ψ + (1− α)N

ψ−1
ψ

) 1
ψ−1

. (A.59)

Net output Y is given by production minus fixed costs:

Y = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1
− Φ

(A.58)= Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

Ξ
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ 1

(1−φo)

αK
ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

,

(A.60)

which in the absence of overhead labor reduces to

Y = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

.

Equation (A.60) implies that the normalizing technology factor Y norm is given by

Y norm =


(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

Ξ

(
αK

ψ−1
ψ

t + (1− α) (N −N o)
ψ−1
ψ 1

(1−φo)

)
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

)

−1

.

(A.61)
All the previous equations require knowledge of the labor share parameter α, which is not

a true structural parameter in the sense that it depends on the units of the model variables
(see Cantore and Levine 2012, for details). It can be computed from the actual labor share ℵ
using
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1− ℵ = KRK

Y
=

KΞY norm

(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

αK
ψ−1
ψ
−1

Y norm

(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

ΞαK
ψ−1
ψ +(1−α)(N−No)

ψ−1
ψ 1

1−φo

αK
ψ−1
ψ +(1−α)(N−No)

ψ−1
ψ

= αK
ψ−1
ψ

αK
ψ−1
ψ + (1− α)

(
N − N̄ o

)ψ−1
ψ 1

1−φo

. (A.62)

Solving for α yields

α =
ℵ (N −N o)

ψ−1
ψ 1

1−φo

(1− ℵ)K
ψ−1
ψ + ℵ (N −N o)

ψ−1
ψ 1

1−φo

, (A.63)

allowing us to compute the normalizing technology factor Y norm from (A.61) and the fixed
costs Φ from (A.58).

We also need to compute the steady states of our auxiliary variables in the model. In
steady state, the wage markup between marginal rate of substitution is

MRS = 1− η
η

C

1−N , (A.64)

while the real wage is given by
Ξw = θw

θw − 1 . (A.65)
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A.4 Smoothed Volatilities from the Particle Smoother

1960 1970 1980 1990 2000 2010

quarters

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
e

rc
e

n
t

(a) Government Spending Volatility

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

quarters

0

0.2

0.4

0.6

0.8

1

1.2

p
e

rc
e

n
t

(b) TFP Volatility

Figure A.1: Median smoothed volatilities from the particle smoother, based on 20,000
particles for the forward pass and 20,000 particles for the backward smoothing
routine. Shaded areas denote 90% highest posterior density intervals.
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A.5 Additional Model IRFs
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Figure A.2: Model IRFs with sticky prices and flexible wages. Notes: Theoretical responses
to a four-standard deviation shock measured in percentage deviations from the
stochastic steady state.

5 10 15 20
quarters

0

0.5

1

pe
rc

en
t

t
g

5 10 15 20
quarters

-1

0

1
t
p

5 10 15 20
quarters

0

0.5

1

10-3 t
w

5 10 15 20
quarters

-15

-10

-5

0
10-5 Yt

(a) Government Spending Volatility

5 10 15 20
quarters

0

0.2

0.4

0.6

0.8

pe
rc

en
t

t
z

5 10 15 20
quarters

-1

0

1
t
p

5 10 15 20
quarters

0

0.005

0.01

0.015

t
w

5 10 15 20
quarters

-6

-4

-2

0
10-3 Yt

(b) Technology Volatility

Figure A.3: Model IRFs with sticky wages and flexible prices. Notes: Theoretical responses
to a four-standard deviation shock measured in percentage deviations from the
stochastic steady state.
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Figure A.4: Model IRFs with flexible prices and wages. Notes: Theoretical responses to
a four-standard deviation shock measured in percentage deviations from the
stochastic steady state.
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B Marginal Product of Labor for Markup Computa-
tion

Given our production function, the marginal product of labor is equal to

MPLt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1−1 (1− α)

(
eZt (Nt −N o)

)ψ−1
ψ

Nt −N o
.

(B.1)
This is equal to

MPLt =
Y norm

[
αK

ψ−1
ψ

t + (1− α)
(
eZt (Nt −N o)

)ψ−1
ψ

] ψ
ψ−1


1
ψ

× (Y norm)
ψ−1
ψ

(1− α)
(
eZt (Nt −N o)

)ψ−1
ψ

Nt −N o
.

(B.2)

Using (A.1), we have that

Yt + Φ = Y norm

[
αK

ψ−1
ψ

t + (1− α)
(
eZt (Nt −N o)

)ψ−1
ψ

] ψ
ψ−1

(B.3)

so that

MPLt = (1− α) (Y norm)
ψ−1
ψ

(
eZt
)ψ−1

ψ

(
Yt + Φ
Nt −N o

) 1
ψ

. (B.4)

In case of no fixed costs and no overhead labor, this reduces to the familiar

MPLt = (1− α) (Y norm)
ψ−1
ψ

(
eZt
)ψ−1

ψ

(
Yt
Nt

) 1
ψ

. (B.5)

In logs, we have from (B.4)

log (MPLt) = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
log

(
eZt
)

+ 1
ψ

log
(
Yt + Φ
Nt −N o

)
, (B.6)

where the first term is a constant that depends on the units of measurement. For the second
term, we need a measure of labor-augmenting technology Zt. Thus, the price markup can be
computed as

ξpt = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
Zt + 1

ψ
log

(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
. (3.19)

Technology movements are approximated using the Fernald (2012) utilization-adjusted
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TFP measure. This TFP measure, based on growth accounting, originally assumes a unit
elasticity of output with respect to technology, which would correspond to Hicks-neutral
technology growth. Starting from a general production function

Y = Y (K,L, TFP ) , (B.7)

the contribution of TFP to output growth is effectively computed via the total differential as
the part of output growth not accounted for by utilization adjusted factor growth:

dTFPt
TFPt

= dYt
Yt
− εK,t

dKt

Kt

− εN,t
dNt

Nt

, (B.8)

where ε denotes the respective output elasticities and where by construction εTFP,t = 1. Thus,
we need to transform this TFP measure to correspond to our measure of labor-augmenting
(Kaldor-neutral) technology At = eZt as

dTFPt
TFPt

= εA,t
dAt
At
⇒ logAt = 1

εA,t
log TFPt , (B.9)

where the integration constant has been set to 0. Thus, when knowing the elasticity of
TFP with respect to labor-augmenting technology, εA,t, the Fernald (2012) measure can be
transformed into our required technology measure.46 As εA,t is invariant to multiplicative
transformations of output, we first normalize output by steady state/balanced growth path
output Y to get gross deviations from steady state:47

Ŷ ≡ Yt
Y

=

[
αK

ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

] ψ
ψ−1

− Φ
[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1
− Φ

, (B.10)

where A is a constant capturing the unknown level of labor-augmenting technology and all
other normalizations, e.g. the one introduced by using an index for output.

Noting that in steady state

Y = 1
(1 + φfix)

[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1

(B.11)

Φ = φfix
(1 + φfix)

[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1

(B.12)

46In the Cobb-Douglas case, we have Yt = Kα
t (AtLt)1−α = A1−α

t Kα
t L

1−α
t so that a one percent change in

labor-augmenting technology At moves measured TFP by εA,t = 1− α percent (up to first order).
47We suppress the assumed deterministic loglinear trend in A for notational convenience.
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equation (B.10) can be rewritten as

Ŷ =
(1 + φfix)

[
αK

ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

] 1
ψ

[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1

− φfix . (B.13)

Using the corresponding firm first-order conditions

Wt

Pt
= Ξ

 (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

αK
ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

 Yt + Φ
Nt −N o

(B.14)

and

RK
t = Ξ

 αK
ψ−1
ψ

t

αK
ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

 Yt + Φ
Kt

, (B.15)

equation (B.13) becomes

Ŷ = (1 + φfix)

 αK
ψ−1
ψ

t

αK
ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

+
(1− α)

(
AeẐt (Nt −N o)

)ψ−1
ψ

αK
ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ


ψ
ψ−1

− φfix

= (1 + φfix)

 1
Ξ

RKK

(Y + Φ)

(
Kt

K

)ψ−1
ψ

+ 1
Ξ
W

P

(N −N o)
(Y + Φ)

AeẐt (Nt −N o)
A (N −N o)


ψ−1
ψ


ψ
ψ−1

− φfix .

(B.16)

Defining the share of non-overhead labor compensation in output as

ℵo ≡
W
P

(N −N o)
Y

=
W
P
N

Y

N −N o

N
= ℵ (1− φo) (B.17)

and noting that the prefactors in front of capital and labor sum up to 1, equation (B.13) can
be rewritten as

Ŷt = (1 + φfix)
[(

1− ℵo

Ξ (1 + φfix)

)
K̂

ψ−1
ψ

t + ℵo

Ξ (1 + φfix)
(
eẐtN̂t

)ψ−1
ψ

] ψ
ψ−1

− φfix (B.18)

The elasticity of output with respect to technology At can then be computed by differentiating
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net output deviations from steady state with respect to Ẑt,

εA,t =∂(Ŷt − 1)
∂Ẑt

= (1 + φfix)
[(

1− ℵo

Ξ (1 + φfix)

)
K̂

ψ−1
ψ

t + ℵo

Ξ (1 + φfix)
(
eẐtN̂t

)ψ−1
ψ

] ψ
ψ−1−1

× 1
Ξ (1 + φfix)

ℵo
(
eẐtN̂t

)ψ−1
ψ

(B.18)=
[
Ŷt + φfix
1 + φfix

] 1
ψ 1

Ξℵ
o
(
eẐtN̂t

)ψ−1
ψ

(B.19)

In the Cobb-Douglas case in steady state, this simplifies to the well-known

εA,t = 1
Ξℵ . (B.20)

To operationalize the aforementioned, we first need to detrend output with the rate of
labor-augmenting technology growth.

C Data

C.1 Macro Data

The data for the VARs is taken from FRED-MD (McCrackenNg2015), except for i) our
constructed markup measure, ii) the respective uncertainty measure, iii) the shadow federal
funds rate, which is taken from Wu and Xia (2016), and iv) real new orders, which are taken
from Conference Board as the sum of “Orders: consumer goods” (A1M008) and “Orders:
capital goods” (A1M027) and are deflated using the “PCE Implicit Price Deflator” (PCEPI)
from FRED-MD.

For the particle filtering, we use Government Consumption Expenditures and Gross
Investment (FRED: GCE) as our measure of government spending and Real Gross Domestic
Product (FRED: GDPC1) as our output measure. Both are transformed to per capita values
via division by Civilian non-institutional population (FRED: CNP16OV), smoothed with an
HP-filter with λ = 10,000 to solve the best levels problem (Edge, Gürkaynak, and Kisacikoǧlu
2013). The resulting per capita series are then logged and detrended using a one-sided
HP-filter.

For TFP, we cumulate the utilization adjusted TFP growth rates of Fernald (2012)
(dtfp_util, transformed from annualized to quarterly growth rates), and detrend using a
one-sided HP-filter.
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C.2 Uncertainty measures

• The Jurado et al. (2015) macro uncertainty measure and the Ludvigson et al. (2015)
financial uncertainty measure are available at Sydney Ludvigson’s homepage at https:
//www.sydneyludvigson.com/data-and-appendixes/. We use the h = 1 measures.

• The Baker et al. (2016) economic policy uncertainty measure is taken from FRED
(USEPUINDXM)

• The VIX index is taken from FRED (VIXCLS) and averaged across months. Before
the VIX becomes available in 1990, we use the realized stock return volatility. For
that purpose, we compute the monthly standard deviation of the daily S&P 500
stock price index returns. The stock price index values are taken from Datastream
(S&PCOMP(PI)). The resulting index of realized volatilities is normalized to have the
same mean and variance as the VIX index when they overlap from 1990 onwards. The
correlation between the two during that period is 0.8776.

C.3 Wage Markup

For the wage markup, i.e. the wedge between the marginal rate of substitution and the real
wage, we focus on an encompassing measure of hours. Recall the equation for computing the
wage markup

ξwt = log
(

1− τnt
1 + τ ct

)
+ log

(
WtNt

PtYt

)
+ log

(
Yt
Ct

)
− log

(
1− η
η

)
+ log

(1−Nt

Nt

)
. (3.18)

Demeaning yields:

ξwt − ξw =
[
log

(
WtNt

PtYt

)
− log

(
WN

PY

)]
+
[
log

(
Yt
Ct

)
− log

(
Y

C

)]
+
[
log

(1−Nt

Nt

)
− log

(1−N
N

)]
+
[
log

(
1− τnt
1 + τ ct

)
− log

(1− τn
1 + τ c

)]
,

(C.1)

where the first term on the right hand side is the labor share. Expanding the fractions to get
the wedge in terms of the labor share and the consumption to output ratio has the advantage
of avoiding problems with different trends that may be contained in different data sources.48

48For example, the trend in NIPA GDP and Average hourly earnings of production and nonsupervisory
workers in the private sector differs, although theory says they should be the same.
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In the isoelastic case with felicity function

U(Ct, Nt) = log(Ct)− ψ
N

1+ 1
εl

t

1 + 1
εl

(C.2)

where εl is the Frisch elasticity and ψ the weight of labor in the utility function, we get

ξwt = log
(

1− τnt
1 + τ ct

)
+ log

(
WtNt

PtYt

)
+ log

(
Yt
Ct

)
+ log(ψ) +

(
1 + 1

εl

)
log(Nt) . (C.3)

In order to compute the wage markup, the right-hand-side variables are mapped to the
data in the following way:

• WtNt
PtYt

: to compute the labor share, we take the share of employees’ compensation
Compensation of Employees, Paid (FRED: COE) in net national income (NNI), where
net national income is compute as National Income (FRED: NICUR) minus net indirect
taxes, computed as the difference between taxes on production and imports (FRED:
GDITAXES) and subsidies (FRED: GDISUBS). To this we add part of the ambiguous
proprietor’s income (FRED: PROPINC). The share of proprietor’s income assigned
to labor is computed as the share of unambiguous labor income in total unambiguous
income resulting in

WN

PY
= COE

NNI − PROPINC
.

• Pt: Gross Domestic Product: Implicit Price Deflator (FRED: GDPDEF).

• Yt: Gross Domestic Product (FRED: GDP), deflated by the GDP deflator and divided
by population Popt (defined below).

• Ct: real private consumption is computed as the sum of Personal Consumption Expen-
ditures: Nondurable Goods (FRED: PCND) and Personal Consumption Expenditures:
Services (FRED: PCESV), each deflated by the GDP deflator and divided by population
Popt

49

• Nt: We use a quarterly total hours measure following Cociuba et al. (2012), divided
by population Popt. For this purpose, we extend their measure to include more recent
periods.

1. Compute the civilian non-institutional population between 16 and 65 years by
subtracting the (Unadj) Population Level - 65 yrs. & over (BLS: LNU00000097)

49Due to chain-weighting, this separate deflating is required to preserve additivity.
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from Civilian Noninstitutional Population (BLS: LNU00000000), both averaged
over the respective quarter.

2. To compute the number of military personell, we first download the most recent
vintage from Simona Cociuba’s website at https://sites.google.com/site/
simonacociuba/research and then update Military Personnel- Total Worldwide
using data from https://www.dmdc.osd.mil/appj/dwp/dwp_reports.jsp: Mil-
itary Personnel -> Active Duty Military Personnel by Service by Rank/Grade
(Updated Monthly); for the current year, we use the monthly PDFs. There, we
use GRAND TOTAL- Total services. Again we average monthly values to get a
quarterly series.

3. Civilian employment and weekly hours worked before 1976, which are based on
Census and BLS data in printed books, are taken from the most recent vintage
from Simona Cociuba’s website.

4. Civilian employment after 1976 is taken from Number Employed, At Work (BLS:
LNU02005053), while their weekly hours worked are from Average Hours, Total
At Work, All Industries (BLS: LNU02005054).

The series in 2 to 4 are first averaged over the quarter. When doing so for the civilian
series in 3 and 4, we follow Cociuba et al. (2012) and check for outliers on the low
side, i.e. we check whether dt ≡ mean(mi)/min(mi) < 0.95, where mi denotes the
months belonging to a quarter. If dt < 0.95, we use (3×mean(mi)−min(mi))/2 and
mean(mi) otherwise. The civilian quarterly series are then seasonally adjusted using
the X13 routine of Eviews 8. Total quarterly hours are computed as the sum of civilian
and military hours, both computed as the product of employment times weekly hours
worked in the respective category. For military weekly hours, we assume a workweek of
40 hours. To get from weekly to quarterly hours, we assume 4 quarters with 13 weeks.

• Popt: we use the sum of civilian non-institutional population between 16 and 65 and
military personell, based on our update of Cociuba et al. (2012).

• Leisure 1−Nt: Following Karabarbounis (2014), who in turn is motivated by Aguiar,
Hurst, and Karabarbounis (2013), we normalize the discretionary time endowment
available to 92 hours per week per person and compute leisure as the difference between
this endowment and Nt. Again, the measure is transformed to per capita values by
dividing by Popt.

• Labor tax rate τnt : The average labor income tax rate is computed as the sum of taxes
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on labor income, τLI , plus the “tax rate” on social insurance contributions, τSI ,

τn = τLI + τSI .

We closely follow Mendoza, Razin, and Tesar (1994), Jones (2002), and Leeper, Plante,
and Traum (2010) and compute the tax rate from the national accounts by dividing the
tax revenue by the respective tax base. For labor income tax rates, we need to compute
the portion of personal income tax revenue that can be assigned to labor income. We
first compute the average personal income tax rate

τ p = IT

W + PRI/2 + CI
,

where IT is personal current tax revenues computed as the sum of Federal government
current tax receipts: Personal current taxes and State and local government current
tax receipts: Personal current taxes (Table 3.1 line 3, FRED: A074RC1Q027SBEA +
W071RC1Q027SBEA), W is Compensation of Employees: Wages and Salary Accruals
(Table 1.12 line 3, FRED: WASCUR), PRI is Proprietors’ Income with Inventory
Valuation Adjustment(IVA) and Capital Consumption Adjustment (CCAdj) (Table 1.12
line 9, FRED: PROPINC), and CI is capital income. It is computed as

CI ≡ PRI/2 +RI + CP +NI ,

where RI is Rental Income of Persons with Capital Consumption Adjustment (CCAdj)
(Table 1.12 line 12, FRED: RENTIN), CP is Corporate Profits with Inventory Valuation
Adjustment (IVA) and Capital Consumption Adjustment (CCAdj) (Table 1.12 line
13, FRED: CPROFIT), and NI denotes Net interest and miscellaneous payments on
assets (Table 1.12 line 18, FRED: W255RC1Q027SBEA). In doing so, the ambiguous
proprietor’s income is assigned in equal parts to capital and labor income. The labor
income tax can then be computed as

τLI = τ p(W + PRI/2)
EC + PRI/2 ,

where EC is National Income: Compensation of Employees, Paid (Table 1.12 line 2,
FRED: COE), which, in addition to wages, includes contributions to social insurance
and untaxed benefits. The social insurance “tax rate” is given by

τSI = CSI

EC + PRI/2 ,

where CSI denotes Government current receipts: Contributions for government social
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insurance (Table 3.1 line 7, FRED: W782RC1Q027SBEA).

• Consumption tax rate τ ct : The tax revenue from consumption taxes, CT , requires
apportioning the indirect tax revenue to investment and consumption.50 We do this as:

CT = PC

PC + I
INDT ,

where PC is Personal Consumption Expenditures (FRED: PCE), I is Gross Private
Domestic Investment (FRED: GPDI), and INDT is net indirect taxes, computed as
the difference between Gross Domestic Income: Taxes on Production and Imports
(FRED: GDITAXES) and Gross Domestic Income: Subsidies (FRED: GDISUBS).51

The consumption tax rate is then computed as

τ c = CT

PC − CT
.

C.4 Price Markup

For the price markup, i.e. the wedge between the real wage and the marginal product of labor,
we focus on the private business sector. Recall the equation for computing the price markup:

ξpt = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
Zt + 1

ψ
log

(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
. (3.19)

Demeaning this expression yields:

ξpt − ξp =ψ − 1
ψ

log
(
eZt
)

+ 1
ψ

[
log

(
Yt + Φ
Nt −N o

)
− log

(
Y + Φ
N −N o

)]

−
[
log

(
Wt

Pt

)
− log

(
W

P

)] (C.4)

where

eZt = 1
εA,t

log TFPt (C.5)

εA,t =
[
Ŷt + φfix
1 + φfix

] 1
ψ 1

Ξℵ
o
(
eẐtN̂t

)ψ−1
ψ (B.19)

We can then compute the price markup by using the following sources:
50We opt to not attribute sales tax revenues to government purchases due to the different tax-exemption

status of local, state, and federal purchases in different states. For example, government entities are sales
tax-exempt in New York, but are tax-liable in California.

51The use of net indirect taxes follows Karabarbounis (2014) and differs from e.g. Mendoza et al. (1994)
who use gross indirect taxes.
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• Wt: following the approach in Nekarda and Ramey (2013), we use the Average
hourly earnings of production and nonsupervisory workers in the private sector (BLS:
CES0500000008).52

• Pt: Gross Domestic Product: Implicit Price Deflator (FRED: GDPDEF).

• Nt −N o: Average weekly hours of production and nonsupervisory employees, private
business (BLS: CES0500000006) multiplied by Production and nonsupervisory employ-
ees, private business (CES: CES0500000006), divided by Civilian non-institutional
population.

• Yt: Current dollar output, private business (BLS: PRS84006053), deflated using the
GDP deflator and divided by Civilian non-institutional population, detrended by an
exponential trend.

• Φ: Consistent with our model, we assume additional fixed costs of 2.96% of steady-state
output per capita, which we approximate using the average detrended log output per
capita.

• Population: Civilian non-institutional population (FRED: CNP16OV), smoothed with
an HP-filter with λ = 10,000 to solve the best levels problem (Edge et al. 2013).

• TFPt: cumulated sum of the utilization adjusted or non-utilization adjusted TFP
growth rates of Fernald (2012) (dtfp_util or dtfp, starting value initialized to 1,
transformed from annualized to quarterly growth rates), detrended by an exponential
trend.

• ℵo: The labor share not accounting for overhead labor, ℵ is computed as 1 minus
Capital’s share of income from Fernald (2012),53 which is “[B]ased primarily on NIPA
data for the corporate sector”. To derive the share of non-overhead labor ℵo, we use
equation

ℵo ≡
W
P

(N −N o)
Y

=
W
P
N

Y

N −N o

N
= ℵ (1− φo) (B.17)

with φo = 0.11 as discussed in the calibration section.

In the Cobb-Douglas case, the price markup simplifies to

ξpt = log
(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
, (C.6)

52This implicitly assumes that all nonproduction and supervisory workers are overhead labor, which
probably is an upper bound (see Ramey 1991).

53This series substitutes for Business Sector: Labor Share (FRED: PRS84006173), which is unfortunately
only available in index form.
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which, in the absence of fixed costs, reduces to the inverse labor share. In the robustness
checks, we use three different measures:

• The labor share based on total compensation in the nonfinancial business sector is
computed as Net value added of nonfinancial corporate business: Compensation of
employees (FRED: A460RC1Q027SBEA), divided by Gross value added of nonfinancial
corporate business (FRED: A455RC1Q027SBEA) minus Net value added of nonfi-
nancial corporate business: Taxes on production and imports less subsidies (FRED:
W325RC1Q027SBEA).

• The labor share in the private business sector is based on Business Sector: Labor Share
(FRED: PRS84006173).

• The labor share based on total compensation in the private business sector is computed
as the product of Production and Nonsupervisory Employees: Total Private (FRED:
CES0500000006), Average Weekly Hours of Production and Nonsupervisory Employees:
Total private (FRED: AWHNONAG) and Average Hourly Earnings of Production
and Nonsupervisory Employees: Total Private (FRED: AHETPI) divided by Business
Sector: Current Dollar Output (FRED: PRS84006053).

C.5 Industry-level markups

The majority of our data needed to construct industry-level price markups comes from the
NBER-CES manufacturing industry database, which covers the SIC2 industries 20 to 39 at a
four-digit granularity for the years 1958–2011.

We compute industry-level price markups using equations B.19, C.4, and C.5. As we have
no information on fixed costs, we assume the absence of fixed costs such that

ξpi,t = ψ − 1
ψ

log
(
eZi,t

)
+ 1
ψ

log
(

Yt
Ni,t −N o

i

)
− log

(
Wi,t

Pi,t

)
, (C.4’)

where

eZi,t = 1
εA,i

log TFPi,t . (C.7)

Here, we use the steady-state elasticity εA,i given by

εA,i = 1
Ξi

ℵoi , (B.19’)

where ℵoi is the labor share and Ξ−1
i is the gross markup.
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The NBER-CES database only contains information on wages paid. But what matters
for the labor margin is the total compensation of employees. For that reason we follow
the approach of Chang and Hong (2006) and Nekarda and Ramey (2011) and multiply the
wage bill in the CES database by the ratio of the total compensation (NIPA Table 6.2,
Compensation of Employees by Industry) to wages (NIPA Table 6.3 Wages and Salaries by
Industry) at the two-digit industry level. The respective mapping is displayed in Tables C.1
and C.2. When the SIC classifications in the NIPA tables change, we splice the respective
adjustment factor series by giving precedence to the 1987 SIC series (NIPA Table B) when
there is overlap and multiplying the earlier/later series by the ratio of the two series in the
first/last period of overlap to ensure smooth pasting. Similarly, the database only contains
hours of production workers (NBER-CES code: prodh). To compute total hours (toth), we
compute the number of production workers as the difference between total employment (emp)
and production workers (prode). We then assume that non-production workers are salaried
and work 1960 hours per year as in Nekarda and Ramey (2011):

toth = prodh+ (emp− prode)× 1960 . (C.8)

The database contains information about real shipments which is not equal to output
due to inventories. To compute real output accounting for inventories we follow Nekarda
and Ramey (2011). A problem is that only the total value of inventories Inomi,t (invent) is
reported, which also includes inventories of materials that need to be subtracted. The first
step is to compute the change in nominal finished-goods and work-in-process inventories
∆If,nomi,t , which is equal to nominal value added V nom

i,t (vadd) minus the value of shipments
Snomi,t (vship) plus nominal material costs Mnom

i,t (matcost):

∆If,nomi,t = V nom
i,t − Snomi,t +Mnom

i,t . (C.9)

The change in materials inventories ∆Im,nomi,t can then be computed as the difference between
total inventory changes and changes in nominal finished-goods and work-in-process inventories:

∆Im,nomi,t = ∆Inomi,t −∆If,nomi,t . (C.10)

Real output Yi,t can then be computed as54

Yi,t ≈
Snomi,t

Pi,t
+
[
Inomi,t

Pi,t
−
Inomi,t−1

Pi,t−1

]
−

∆Im,nomi,t

Pi,t
. (C.11)

54See the Technical Appendix (A.5) of Nekarda and Ramey (2011) and their discussion of the approximation
error involved.
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To implement the above formulas, we need a sectoral TFP estimate and the elasticity of
labor productivity with respect to labor-augmenting technology εA,i.

Elasticity of labor productivity with respect to labor-augmenting technology

To compute the elasticity, we need to know both the average markup and the labor share. In
the absence of fixed costs, the average markup can be directly computed from the average
profit share, as one minus the profit share is then equal to the inverse steady-state gross
industry markup.

The profit share in industry i, Πps
i,t is computed as

Πps
i,t = (Y nom

i,t −W comp,nom
i,t − (0.05 + δ̄)Ki,tP

inv
i,t −Mnom

i,t )/Y nom
i,t , (C.12)

where Y nom
i,t is nominal output defined as real output Yi,t times the shipment deflator (’pship’),

W comp,nom
i,t it total compensation of employees, Mnom

i,t is nominal materials costs (matcost),
and (0.05 + δ̄)Ki,tP

inv
i,t is the imputed nominal cost of capital, where we assume an interest

rate of 5% per year.
We compute the average depreciation rate from

δi,t = 1− (Ki,t − Ii,t)/Ki,t−1 , (C.13)

where real investment is obtained by dividing nominal investment (’invest’) by the investment
deflator P inv

i,t (’piinv’) and Ki,t is the real capital stock (’cap’). When computing the average
depreciation rate δ̄ over the sample, we discard observations that show negative depreciation
rates and depreciation rates larger than 50%.

The elasticity of labor productivity with respect to labor-augmenting technology is then
given by the mean labor share, 1/T ∑T

t=1 W
comp,nom
i,t /Y nom

i,t , times the inverse markup.55

Industry-level TFP

To get a measure of productivity, we follow Nekarda and Ramey (2013) and run a Galí
(1999)-type VAR with labor productivity and hours in first differences. We compute labor
productivity by dividing real output Yi,t by either total hours (toth) or hours of production
workers (prodh).

Technology shocks are identified as the only shocks that moves productivity in the long-run.
55The labor share is computed by dividing an appropriate measure of worker compensation by a output

measure. Depending on the concept used, the worker compensation is either the one for production or
production and supervisory workers. As the output measure we use either total value added or total value
added minus material costs. The latter provides a labor share after abstracting from materials.
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An estimated TFP series is then computed by cumulating the productivity growth rates
resulting from simulating the long-run VAR with only the identified technology innovations.56

56Note that this approach assumes the equality between labor productivity movements caused by technology
shocks and TFP.
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Table C.1: Mapping between SIC two digit codes and NIPA Table 6 lines: Total Compensation

SIC code line 60200B Ann Code line 60200C Ann Code line 60200D Ann Code
24 15 Lumber and wood products J4115C0 15 Lumber and wood products B4115C0 15 Wood products N4115C0
25 16 Furniture and fixtures J4116C0 16 Furniture and fixtures B4116C0 24 Furniture and related products N4124C0
32 17 Stone, clay, and glass products J4117C0 17 Stone, clay, and glass products B4117C0 16 Nonmetallic mineral products N4116C0
33 18 Primary metal industries J4118C0 18 Primary metal industries B4118C0 17 Primary metals N4117C0
34 19 Fabricated metal products J4119C0 19 Fabricated metal products B4119C0 18 Fabricated metal products N4118C0
35 20 Machinery, except electrical J4120C0 20 Industrial machinery and equipment B4120C0 19 Machinery N4119C0
36 21 Electric and electronic equipment J4121C0 21 Electronic and other electric equipment B4121C0 21 Electrical equipment, appliances, and components N4121C0
371 22 Motor vehicles and equipment J4122C0 22 Motor vehicles and equipment B4122C0 22 Motor vehicles, bodies and trailers, and parts N4122C0
37 23 Other transportation equipment J4123C0 23 Other transportation equipment B4123C0 23 Other transportation equipment N4123C0
38 24 Instruments and related products J4124C0 24 Instruments and related products B4124C0 19 Machinery N4119C0
39 25 Miscellaneous manufacturing industries J4125C0 25 Miscellaneous manufacturing industries B4125C0 25 Miscellaneous manufacturing N4125C0
20 27 Food and kindred products J4127C0 27 Food and kindred products B4127C0 27 Food and beverage and tobacco products N4127C0
21 28 Tobacco manufactures Q4128BC0 28 Tobacco products Q4128C0 27 Food and beverage and tobacco products N4127C0
22 29 Textile mill products J4129C0 29 Textile mill products B4129C0 28 Textile mills and textile product mills N4129C0
23 30 Apparel and other textile products J4130C0 30 Apparel and other textile products B4130C0 29 Apparel and leather and allied products N4130C0
26 31 Paper and allied products J4131C0 31 Paper and allied products Q4131C0 30 Paper products N4132C0
27 32 Printing and publishing Q4132BC0 32 Printing and publishing Q4132C0 31 Printing and related support activities N4133C0
28 33 Chemicals and allied products J4133C0 33 Chemicals and allied products B4133C0 33 Chemical products N4135C0
29 34 Petroleum and coal products J4134C0 34 Petroleum and coal products B4134C0 32 Petroleum and coal products N4134C0
30 35 Rubber and miscellaneous plastics products J4135C0 35 Rubber and miscellaneous plastics products B4135C0 34 Plastics and rubber products N4136C0
31 36 Leather and leather products J4136C0 36 Leather and leather products B4136C0 29 Apparel and leather and allied products N4130C0

Notes: In Table “60200D Ann.” we do not assign NIPA line 20 “Computer and electronic products” (N4020C0) to any two-digit industry, because in
SIC 1987 it was part “Industrial machinery and equipment” and later became a separate category, introducing a structural break.
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Table C.2: Mapping between SIC two digit codes and NIPA Table 6 lines: Wages

SIC code line 60300B Ann Code line 60300C Ann Code line 60300D Ann Code
24 15 Lumber and wood products J4115C0 15 Lumber and wood products B4115C0 15 Wood products N4115C0
25 16 Furniture and fixtures J4116C0 16 Furniture and fixtures B4116C0 24 Furniture and related products N4124C0
32 17 Stone, clay, and glass products J4117C0 17 Stone, clay, and glass products B4117C0 16 Nonmetallic mineral products N4116C0
33 18 Primary metal industries J4118C0 18 Primary metal industries B4118C0 17 Primary metals N4117C0
34 19 Fabricated metal products J4119C0 19 Fabricated metal products B4119C0 18 Fabricated metal products N4118C0
35 20 Machinery, except electrical J4120C0 20 Industrial machinery and equipment B4120C0 19 Machinery N4119C0
36 21 Electric and electronic equipment J4121C0 21 Electronic and other electric equipment B4121C0 21 Electrical equipment, appliances, and components N4121C0
371 22 Motor vehicles and equipment J4122C0 22 Motor vehicles and equipment B4122C0 22 Motor vehicles, bodies and trailers, and parts N4122C0
37 23 Other transportation equipment J4123C0 23 Other transportation equipment B4123C0 23 Other transportation equipment N4123C0
38 24 Instruments and related products J4124C0 24 Instruments and related products B4124C0 19 Machinery N4119C0
39 25 Miscellaneous manufacturing industries J4125C0 25 Miscellaneous manufacturing industries B4125C0 25 Miscellaneous manufacturing N4125C0
20 27 Food and kindred products J4127C0 27 Food and kindred products B4127C0 27 Food and beverage and tobacco products N4127C0
21 28 Tobacco manufactures Q4128BC0 28 Tobacco products Q4128C0 27 Food and beverage and tobacco products N4127C0
22 29 Textile mill products J4129C0 29 Textile mill products B4129C0 28 Textile mills and textile product mills N4129C0
23 30 Apparel and other textile products J4130C0 30 Apparel and other textile products B4130C0 29 Apparel and leather and allied products N4130C0
26 31 Paper and allied products J4131C0 31 Paper and allied products Q4131C0 30 Paper products N4132C0
27 32 Printing and publishing Q4132BC0 32 Printing and publishing Q4132C0 31 Printing and related support activities N4133C0
28 33 Chemicals and allied products J4133C0 33 Chemicals and allied products B4133C0 33 Chemical products N4135C0
29 34 Petroleum and coal products J4134C0 34 Petroleum and coal products B4134C0 32 Petroleum and coal products N4134C0
30 35 Rubber and miscellaneous plastics products J4135C0 35 Rubber and miscellaneous plastics products B4135C0 34 Plastics and rubber products N4136C0
31 36 Leather and leather products J4136C0 36 Leather and leather products B4136C0 29 Apparel and leather and allied products N4130C0

Notes: In Table “60300D Ann.” we do not assign NIPA line 20 “Computer and electronic products” (N4020C0) to any two-digit industry, because in
SIC 1987 it was part “Industrial machinery and equipment” and later became a separate category, introducing a structural break.
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D Mixed-Frequency VARs

D.1 Priors

We use a shrinking prior of the Independent Normal-Wishart type (Kadiyala and Karls-
son 1997), where the mean and precision are derived from from a Minnesota-type prior
(Litterman 1986; Doan et al. 1984). Denote the vector of stacked coefficients with β =
vec([µ α A1, . . . , Ap]′). It is assumed to follow a normal prior

β ∼ N(β, V ) . (D.1)

For the prior mean β, we assume the variables to follow a univariate AR(1)-model with
mean of 0.9 for levels and mean 0 for growth rates, while all other coefficients are 0. The
prior precision V is assumed to be a diagonal matrix with the highest precision for the first
lag and exponential decay for the other lags. The weighting of cross-terms is conducted
according to the relative size of the error terms in the respective equations, while a rather
diffuse prior is used for deterministic terms. The diagonal element corresponding to the jth
variable in equation i, V i,jj is:

V i,jj =



a1
r2 , for coefficients on own lag r ∈ {1, . . . , p} ,
a2s

2
i

r2s2
j
, for coefficients on lag r ∈ {1, . . . , p} of variable j 6= i ,

a3s
2
i , for coefficients on exogenous variables .

(D.2)

where s2
i is the OLS estimate of the error variance of an AR(p) model with constant and

trend estimated for the ith variable (see Litterman 1986).57 We follow Koop and Korobilis
(2010) and set a1 = 0.2, a2 = 0.5 and a3 = 104. The prior error covariance is assumed to
follow

Σ ∼ IW (S, ν) (D.3)

with ν = 60 “pseudo-observations”, corresponding to ≈ 10% of the observations, and S being
the OLS covariance matrix.

As a practical matter, we use z-scored the data (including the trend) to avoid numerical
problems arising from under-/overflow during the posterior computations that involve sum of
squares. We also impose a stability condition on our VAR by drawing from the conditional
distribution for β until all eigenvalues of the companion form matrix are smaller than 1.

57In case of the quarterly variable, we estimate the AR(p) model on linearly interpolated data.
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D.2 11+1 Variable VAR

The Jurado et al. (2015) 11+1-variable VAR is given by (FRED-MD Acronyms in brackets,
see Appendix C for details on other variables)



log(real IP (INDPRO))
log(employment (PAYEMS))

log(real consumption (DPCERA3M086SBEA))
log(PCE Deflator (PCEPI))

log(real new orders)
log(real wage (CES3000000008))

hours (AWHMAN)
shadow federal funds rate

log(S&P 500 Index (S&P 500))
growth rate of M2 (M2SL)

uncertainty proxy
log(markup)



(D.4)

68



Real industrial prod.

0 10 20 30

-4

-2

0

pe
rc

en
t

Employment

0 10 20 30

-2

-1

0

pe
rc

en
t

Real consumption

0 10 20 30
-2

-1

0

pe
rc

en
t

PCE deflator

0 10 20 30

-1

0

1

pe
rc

en
t

Real new orders

0 10 20 30
-10

-5

0

pe
rc

en
t

Real wage

0 10 20 30
-0.5

0

0.5

1

pe
rc

en
t

Hours

0 10 20 30
-1

-0.5

0

0.5

pe
rc

en
t

FFR

0 10 20 30
-100

0

100

ba
si

s 
po

in
ts

S&P 500

0 10 20 30
-20

-10

0

pe
rc

en
t

M2 growth

0 10 20 30
months

-0.2

0

0.2

pe
rc

en
t

Macro uncertainty

0 10 20 30
months

0

0.05

0.1

un
its

Price markup

0 10 20 30
months

-1

0

1

pe
rc

en
t

(a) Price Markup

Real industrial prod.

0 10 20 30

-4

-2

0

pe
rc

en
t

Employment

0 10 20 30

-2

-1

0

pe
rc

en
t

Real consumption

0 10 20 30
-2

-1

0

pe
rc

en
t

PCE deflator

0 10 20 30
-1

0

1

pe
rc

en
t

Real new orders

0 10 20 30

-6

-4

-2

0

pe
rc

en
t

Real wage

0 10 20 30

0

0.5

1

pe
rc

en
t

Hours

0 10 20 30
-1

-0.5

0

0.5

pe
rc

en
t

FFR

0 10 20 30
-100

0

100

ba
si

s 
po

in
ts

S&P 500

0 10 20 30
-15

-10

-5

0

pe
rc

en
t

M2 growth

0 10 20 30
months

-0.2

0

0.2

pe
rc

en
t

Macro uncertainty

0 10 20 30
months

0

0.05

0.1

un
its

Wage markup

0 10 20 30
months

0

2

4

pe
rc

en
t

(b) Wage Markup

Figure D.5: IRFs to JLN-based uncertainty shock in the 11+1 variable mixed-frequency
VAR. Notes: Bands are pointwise 90% HPDIs.

69



Table D.3: Unconditional forecast error variance explained by uncertainty shock

Y Emp. C P Orders W/P N R S&P ∆M2 Uncert. Markup
Price Markup VAR

12.97 12.85 11.31 6.55 15.02 7.57 11.20 6.95 10.16 4.79 23.53 7.73
Wage Markup VAR

12.86 12.71 11.56 6.48 13.82 8.46 11.28 6.80 11.89 4.64 23.41 14.88
Total Markup VAR

12.39 11.85 11.15 6.06 13.39 7.86 11.44 6.72 11.14 4.58 22.93 10.64

Notes: Mean posterior forecast error variance share explained by the uncertainty shock in the 11+1 variable
mixed-frequency VAR with the Jurado, Ludvigson, and Ng (2015) uncertainty measure ordered second-to-last.
Based on 1000 posterior draws. First row: VAR with price markup measure; Second row: VAR with wage
markup measure.

D.3 8+1 Variable VAR

The Bloom (2009) 8+1 variable VAR is given by


log(S&P 500 Index (S&P 500))
uncertainty proxy

shadow federal funds rate
log(real wage (CES3000000008))

log(CPI (CPIAUCSL))
hours (AWHMAN)

log(manufacturing employment (MANEMP))
log(real manufacturing production (IPMANSICS))

log(markup)



(D.5)
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Figure D.6: IRFs to VIX-based uncertainty shock in the 8+1 variable mixed-frequency
VAR. Notes: Bands are pointwise 90% HPDIs.
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D.4 Additional MF-VAR Figures
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Figure D.7: IRFs to JNL-based uncertainty shock in the 8+1 variable mixed-frequency
VAR. Notes: Bands are pointwise 90% HPDIs.
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Figure D.8: IRFs to financial uncertainty shock in the 11+1 variable mixed-frequency VAR.
Notes: Bands are pointwise 90% HPDIs.
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Figure D.9: IRFs to EPU-based uncertainty shock in the 11+1 variable mixed-frequency
VAR. Notes: Bands are pointwise 90% HPDIs.

73



E Proof of precautionary pricing in stylized example

Denote marginal costs with γ and the optimal relative price chosen by the firm with p. Due
to uncertainty about the aggregate price level, this relative price is due to a mean preserving
spread. The spread is parameterized by 0 ≤ ε < 1. The demand elasticity is given by θ > 0

The firm faces the problem

max
p

EΠ = max[(1 + ε)p− γ][(1 + ε)p]−θ + [(1− ε)p− γ][(1− ε)p]−θ

The FOC is given by:

∂EΠ
∂p

= (1−θ)p−θ(1 + ε)1−θ+θγ(1 + ε)−θp−θ−1+(1−θ)p−θ(1− ε)1−θ+θγ(1− ε)−θp−θ−1 != 0

which simplifies to

(1− θ)p∗(1 + ε)1−θ + (1− θ)p∗(1− ε)1−θ = −θγ[(1 + ε)−θ + (1− ε)−θ]

and thus
p∗ = −θγ[(1 + ε)−θ + (1− ε)−θ]

(1− θ)[(1 + ε)1−θ + (1− ε)1−θ]
.

Now check whether the optimal price increases in the spread ε

∂p∗
∂ε

= −θγ
(1− θ)

 [−θ(1 + ε)−θ−1 − θ(1− ε)−θ−1(−1)][(1 + ε)1−θ + (1− ε)1−θ]
[(1 + ε)1−θ + (1− ε)1−θ]2

− [(1 + ε)−θ + (1− ε)−θ][(1− θ)(1 + ε)−θ + (1− θ)(1− ε)−θ(−1)]
[(1 + ε)1−θ + (1− ε)1−θ]2


simplify

= −θγ
(1− θ)

 [−θ(1 + ε)−θ−1 + θ(1− ε)−θ−1][(1 + ε)1−θ + (1− ε)1−θ]
[(1 + ε)1−θ + (1− ε)1−θ]2

− (1− θ) [(1 + ε)−θ + (1− ε)−θ][(1 + ε)−θ − (1− ε)−θ]
[(1 + ε)1−θ + (1− ε)1−θ]2


Now split in two terms, factor out (−θ) in the first term and use the binomial formula on
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the second term

= −θγ
(1− θ)

−θ(1 + ε)−2θ − θ(1 + ε)−θ−1(1− ε)1−θ + θ(1− ε)−θ−1(1 + ε)1−θ + θ(1− ε)−2θ

[(1 + ε)1−θ + (1− ε)1−θ]2

−(1− θ)

[(
(1 + ε)−θ

)2
−
(
(1− ε)−θ

)2
]

[(1 + ε)1−θ + (1− ε)1−θ]2


= −θγ

(1− θ)

(−θ) (1 + ε)−2θ + (1 + ε)−θ−1(1− ε)1−θ − (1− ε)−θ−1(1 + ε)1−θ − (1− ε)−2θ

[(1 + ε)1−θ + (1− ε)1−θ]2

−(1− θ)

[(
(1 + ε)−θ

)2
−
(
(1− ε)−θ

)2
]

[(1 + ε)1−θ + (1− ε)1−θ]2


Now cancel the −θ (1 + ε)−2θ and −θ (1− ε)−2θ terms present in both terms of the curly

brackets to get

= −θγ
(1− θ)

(−θ) (1 + ε)−θ−1(1− ε)1−θ − (1− ε)−θ−1(1 + ε)1−θ

[(1 + ε)1−θ + (1− ε)1−θ]2
−

[(
(1 + ε)−θ

)2
−
(
(1− ε)−θ

)2
]

[(1 + ε)1−θ + (1− ε)1−θ]2


Finally, factor out (1 + ε)−θ(1− ε)−θ in the first term after the big curly bracket:

= −θγ
(1− θ)︸ ︷︷ ︸

>0

{(−θ)︸ ︷︷ ︸
<0

(1 + ε)−θ(1− ε)−θ
(

1−ε
1+ε −

1+ε
1−ε

)
[
(1 + ε)1−θ + (1− ε)1−θ

]2
︸ ︷︷ ︸

<0

−

[(
(1 + ε)−θ

)2
−
(
(1− ε)−θ

)2
]

[(1 + ε)1−θ + (1− ε)1−θ]2︸ ︷︷ ︸
<0

}

Thus, both parts are positive, establishing that the optimal price increases in response to a
mean preserving spread. As marginal costs were constant, the markup increases.
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