Recursive Adjustment for General Deterministic Components and Improved Tests for the Cointegration Rank

Abstract

This paper discusses tests for the cointegration rank of integrated vector autoregressions when the series are recursively adjusted for deterministic components. To this end, the asymptotic properties of recursive, or adaptive, procedures for the removal of general additive deterministic components are analyzed in two different, complementary, situations. When the stochastic component of the examined time series is weakly stationary (as would be the equilibrium errors), the effect of recursive adjustment vanishes with increasing sample size. When the suitably normalized stochastic component converges weakly to some limiting continuous-time process with integrable paths (as would be the case with the common stochastic trends), recursive adjustment has a permanent effect even asymptotically: the normalized recursively adjusted process converges weakly to a recursively adjusted version of the limiting process. The null limiting distributions of the cointegration rank tests can be expressed in terms of recursively adjusted Brownian motions. Moreover, the finite-sample properties of the cointegration rank tests with recursive adjustment are examined in cases of empirical relevance: the considered deterministic components are a constant, and a constant and a linear trend, respectively. Compared to the likelihood ratio tests or the tests with generalized least squares adjustment, improvements in terms of empirical rejection frequencies under the null are found in finite samples; improvements are found under the alternative as well, with the likelihood ratio test performing increasingly better as the magnitude of the initial condition increases. Regarding rank selection, a very simple combination of the three testing procedures with different adjustments performs best.

Publication
Journal of Time Series Econometrics, 7(2), pp. 143-179
Date