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Abstract

In this paper we propose various tests for serial correlation in fixed-effects
panel data regression models with a small number of time periods. First, a
simplified version of the test suggested by Wooldridge (2002) and Drukker
(2003) is considered. The second test is based on the Lagrange Multiplier
(LM) statistic suggested by Baltagi and Li (1995), and the third test is
a modification of the classical Durbin-Watson statistic. Under the null
hypothesis of no serial correlation, all tests possess a standard normal
limiting distribution as N tends to infinity and T is fixed. Analyzing the
local power of the tests, we find that the LM statistic has superior power
properties. Furthermore, a generalization to test for autocorrelation up to
some given lag order and a test statistic that is robust against time dependent
heteroskedasticity are proposed.
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1 Introduction

Panel data models are increasingly popular in applied work as they have many
advantages over cross-sectional approaches (see e.g. Hsiao, 2003, p. 3ff). The
classical linear panel data model assumes serially uncorrelated disturbances. As
argued by Baltagi (2008, p. 92), this assumption is likely to be violated as the
dynamic effect of shocks to the dependent variable is often distributed over several
time periods. In such cases, serial correlation leads to inefficient estimates and biased
standard errors. Nowadays, (cluster) robust standard errors are readily available in
econometric software like Stata, SAS or EViews that allow for valid inference under
heteroskedasticity and autocorrelation. Therefore, many practitioners consider
a possible autocorrelation as being irrelevant, in particular, in large data sets
where efficiency gains are less important. On the other hand, a significant test
statistic provides evidence that a static model may not be appropriate and should
be replaced by a dynamic panel data model.

A number of tests for serial error correlation in panel data models have been
proposed in the literature. Bhargava et al. (1982) generalized the Durbin-Watson
statistic to the fixed-effects panel model. Baltagi and Li (1991, 1995) and Baltagi
and Wu (1999) derived Lagrange Multiplier (LM) statistics for first order serial cor-
relation. Drukker (2003), elaborating on an idea originally proposed by Wooldridge
(2002), developed an easily implementable test for serial correlation based on the
ordinary least-squares (OLS) residuals of the first-differenced model. This test is
referred to as the Wooldridge-Drucker (henceforth: WD) test. Inoue and Solon
(2006) suggested a portmanteau statistic to test for autocorrelations at any lag
order.

However, all these tests have their limitations. A serious problem of the
Bhargava et al. (1982) statistic is that the distribution depends on N (the number
of cross-section units) and T (the number of time periods) and, therefore, the
critical values have to be provided in large tables depending on both dimensions.
Baltagi and Li (1995) noted that, for fixed T , their test statistic does not possess
the usual χ2 limiting distribution due to the (Nickell) bias in the estimation of
the autocorrelation coefficient. The WD test is based on first differences, which
may imply a loss of power against some particular alternatives. Furthermore, these
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tests are not robust against temporal heteroskedasticity and are not applicable to
unbalanced panels (with the exception of the WD test and the Baltagi and Wu
(1999)-statistic). Inoue and Solon (2006) proposed an LM statistic for the more
general null hypothesis: E(uituis) = 0 for all t < s, where uit denotes the error of
the panel regression. This portmanteau test is attractive for panels with small T as
it is not designed to test against a particular alternative. If T is moderate or large,
however, the size and power properties suffer from the fact that the dimension of
the null hypothesis increases with T 2.

In this paper, we propose new test statistics and modifications of existing test
statistics that sidestep some of these limitations. In Section 2, we first present the
model framework and briefly review the existing tests. Our new test procedures are
considered in Sections 3–5 and the small sample properties of the tests are studied
in Section 6. Section 7 concludes.

2 Preliminaries

Consider the usual fixed effects panel data model with serially correlated distur-
bances

yit = x′itβ + µi + uit (1)

uit = ρui,t−1 + εit , (2)

where i = 1, . . . , N denotes the cross-section dimension and t = 1, . . . , T is the time
dimension, yit is the dependent variable, xit is a k × 1 vector of regressors, β is the
unknown vector of associated coefficients, µi is the (fixed) individual effect, and uit
denotes the regression error. In our benchmark situation, the following assumption
is imposed:

Assumption 1. (i) The error εit is independently distributed across i and t with
E(εit) = 0, E(ε2

it) = σ2
i with c−1 < σ2

i < c for all i = 1, . . . , N and some finite
positive constant c. Furthermore, E |εit|4+δ <∞ for some δ > 0. (ii) The vector
of coefficients β is estimated by a consistent estimator β̂ with β̂ − β = Op(N−1/2).
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(iii) For the regressors it holds that for fixed T and N →∞

1
N

T∑
t=1

N∑
i=1

E(xitx′it) → C ,

where ||C|| =
√
tr(C ′C) <∞.

All tests are based on the residual êit = yit−x′itβ̂ = µi+uit−x′it(β̂−β). Assumption
1 (ii) allows us to replace the residuals êit by eit = µi + uit in our asymptotic
considerations. If xit is assumed to be strictly exogenous, the usual within-group
(or least-squares dummy-variable, cf. Hsiao, 2003) estimator or the first difference
estimator (cf. Wooldridge, 2002) may be used. If xit is predetermined or endogenous,
suitable instrumental variable (or GMM) estimators of β satisfy Assumption 1
(ii) (e.g. Wooldridge, 2002). It is important to notice that the efficiency of the
estimator β̂ does not affect the asymptotic properties (i.e. size or local power) of
tests based on êit.

To test the null hypothesis ρ = 0, Bhargava et al. (1982) proposed the pooled
Durbin-Watson statistic given by

pDW =

N∑
i=1

T∑
t=2

(ûit − ûi,t−1)2

N∑
i=1

T∑
t=1

û2
it

,

where ûit = yit − x′itβ̂ − µ̂i, and β̂ and µ̂i denote the least-squares dummy-variable
(or within-group) estimator of β and µi, respectively. A serious problem of this
test is that its null distribution depends on N and T and, therefore, the critical
values are provided in large tables depending on both dimensions in Bhargava et al.
(1982). Furthermore, no critical values are available for unbalanced panels.

Baltagi and Li (1995) derive the LM test statistic for the hypothesis ρ = 0
assuming normally distributed errors. The resulting test statistic is equivalent to
(the LM version of) the t-statistic of % in the regression

ûit = %ûi,t−1 + νit . (3)
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The LM test statistic results as

LM =
√
NT 2

T − 1


N∑
i=1

T∑
t=2

ûitûi,t−1

N∑
i=1

T∑
t=1

û2
it

 .

Baltagi and Li (1995) show that if N → ∞ and T → ∞, the LM statistic has a
standard normal limiting distribution. However, if T is fixed and N → ∞, the
application of the respective critical values leads to severe size distortions (see
Section 3.2).

3 Test statistics for fixed T

In this section, we consider test procedures that are valid for fixed T and N →∞.
All statistics have the general form

λNT =

N∑
i=1

ẑT i√√√√ N∑
i=1

ẑ2
T i − 1

N

(
N∑
i=1

ẑT i

)2
, (4)

where ẑT i = ê′iAT êi, êi = [êi1, . . . , êiT ]′, êit = yit − x′itβ̂ and AT is a deterministic
T × T matrix. The matrix AT is constructed such that it eliminates the individual
effects from êi. Specifically we make the following assumption with respect to the
matrix AT :

Assumption 2. (i) Let ιT denote the T × 1 vector of ones. The T × T matrix
AT obeys AT ιT = 0, A′T ιT = 0 and tr(AT ) = 0. (ii) Let Xi = [xi1, . . . , xiT ]′ and
ui = [ui1, . . . , uiT ]′. For all i = 1, . . . , N it holds that E[X ′i(AT + A′T )ui] = 0.

In Lemma A.1 of the appendix it is shown that under Assumptions 1 – 2 the esti-
mation error β̂ − β is asymptotically negligible. Note that, in general, Assumption
2 (ii) is violated if xit is predetermined or endogenous.

The following lemma presents the limiting distribution of the test statistic under
a sequence of local alternatives.
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Lemma 1. (i) Under Assumptions 1–2, ρ = 0, fixed T , and N → ∞, the test
statistic λNT has a standard normal limiting distribution. (ii) Under the local alter-
native ρN = c/

√
N , εit ∼ N (0, σ2

i ) and Assumptions 1–2 the limiting distribution
is given by

λNT
d−→ N


cκ

(
N∑
i=1

tr(ATHT )
)

√
tr(A2

T + A′TAT )
, 1

 ,
where κ = m2/

√
m4 with mk = limN→∞N

−1∑N
i=1 σ

k
i and HT is a T × T matrix

with (t, s)-element HT,ts = 1 for |t− s| = 1 and zeros elsewhere.

A straightforward extension to unbalanced panel data with Ti consecutive observa-
tions in group i and ê′iATi

êi yields1

λNTi
d−→ N

c
lim
N→∞

N−1
N∑
i=1

σ2
i tr(ATi

HTi
)√

lim
N→∞

N−1
N∑
i=1

σ4
i tr(A2

Ti
+ A′Ti

ATi
)
, 1

 .

Hence, to accommodate unbalanced panel data, the tests are computed with
individual specific transformation matrices ATi

instead of a joint matrix AT .

3.1 The WD test statistic

To obtain a valid test statistic for fixed T , Wooldridge (2002, p. 282f) suggests to run
a least squares regression of the differenced residuals ∆êit = êit− êi,t−1 on the lagged
differences ∆êi,t−1.2 Under the null hypothesis ρ = 0, the first order autocorrelation
of ∆êit converges in probability to −0.5. Since ∆êit is serially correlated, Drukker
(2003) suggests to employ heteroskedasticity and autocorrelation consistent (HAC)

1As pointed out by Baltagi and Wu (1999), the case of gaps within the sequence of observations
is more complicated.

2Since this test employs the least-squares estimator in first differences, this test assumes
E(∆xit∆uit) = 0 or E(xituis) = 0 for all t and s ∈ {t− 1, t, t+ 1}.
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standard errors,3 yielding the test statistic

WD = θ̂ + 0.5
ŝθ

.

Here, θ̂ denotes the least-squares estimator of θ in the regression

∆êit = θ∆êi,t−1 + ηit , (5)

and ŝ2
θ is the HAC variance estimator computed as

ŝ2
θ =

N∑
i=1

(
T∑
t=3

∆êi,t−1η̂it

)2

(
N∑
i=1

T∑
t=3

∆ê2
i,t−1

)2 ,

with η̂it as the pooled OLS residual from the autoregression (5).
In the following theorem, we propose a simplified and asymptotically equivalent

version of the WD test.

Theorem 1. Let ẑT i =
T∑
t=3

(êit− 1
2 êi,t−1− 1

2 êi,t−2)(êi,t−1− êi,t−2) and denote by W̃D
the corresponding test statistic constructed as in (4).

(i) Under Assumptions 1–2, uit ∼ N (0, σ2
i ), T ≥ 3, and ρN = c/

√
N , it follows

that

W̃D d−→ N

c κ(T − 2)√
2(T − 3) + 3

, 1
 ,

where κ is defined in Lemma 1.

(ii) The test statistic W̃D is asymptotically equivalent to WD in the sense that
W̃D−WD p−→ 0 as N →∞.

Remark 1: The form of the test statistic results from

θ̂ + 0.5 =

N∑
i=1

T∑
t=3

(∆êit∆êi,t−1 + 1
2∆ê2

i,t−1)
N∑
i=1

T∑
t=3

(∆êi,t−1)2
=

N∑
i=1

ẑT i

N∑
i=1

T∑
t=3

(∆êi,t−1)2
.

3This approach is also known as “robust cluster” or “panel corrected” standard errors.
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The W̃D statistic deviates from WD by computing the HAC variance based on the
residuals obtained under the null hypothesis, i.e., η0

it = ∆êit + 0.5∆êi,t−1 instead of
the residuals η̂it used to compute the original WD statistic.

Remark 2: It is interesting to note that under the alternative we have as N →∞

θ̂ + 0.5 p−→ r1 − r2

2(1− r1) +O(T−1) ,

where rj is the j’th autocorrelation of uit. This suggests that WD (and W̃D) is a
test against the difference between the first and second order autocorrelation of
the errors. Therefore, the test is expected to have poor power against alternatives
with r1 ≈ r2.

Remark 3: The test statistic is robust against cross-sectional heteroskedasticity.
However, using θ = −0.5 requires that the variances do not change in time, i.e.,
E(u2

it) = σ2
i for all t. Thus, this test rules out time dependent heteroskedasticity.

3.2 The LM test

An important feature of the LM test suggested by Baltagi and Li (1995) is that
the limit distribution depends on T . This is due to the fact that the least-squares
estimator of % in regression (3) is biased and the errors νit in (3) are autocorrelated.
Under fairly restrictive assumptions the following asymptotic null distribution is
obtained:

Lemma 2. Under Assumption 1 and uit iid∼ N (0, σ2) for all i and t, it holds for
fixed T and N →∞ thatLM +

√
N

T − 1

 d−→ N
(

0, (T + 1)(T − 2)2

(T − 1)3

)
.

It follows that applying the usual critical values derived from the χ2
1 distribution

to the (two-sided) test statistic LM2 yields a test with actual size tending to unity
as N → ∞. Note also that the limit distribution of the LM statistic tends to a
standard normal distribution if T →∞ and N/T → 0. To obtain an asymptotically
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valid test for fixed T , the transformed statistic

L̃M =

√√√√ (T − 1)3

(T + 1)(T − 2)2

LM +
√

N

T − 1


may be used, which has a standard normal limiting null distribution. An important
limitation of this test statistic is, however, that the result requires the errors to
be normally distributed with identical variances for all i ∈ {1, . . . , N}. To obtain
a test statistic that is valid in more general (and realistic) situations, we follow
(Wooldridge, 2002, p. 275) and construct a test of the least squares estimator %̂ of
% in the regression

êit −
1
T

T∑
t=1

êit = %

(
êi,t−1 −

1
T

T∑
t=1

êit

)
+ νit . (6)

Let M1 and MT denote matrices that result from M = IT − T−1ιT ι
′
T (with IT indi-

cating the T ×T identity matrix) by dropping the first or the last row, respectively.
Using this matrix notation, we obtain

%̂
p−→ %0 = tr(M ′

1MT )
tr(M ′

TMT ) = − (T − 1)/T
(T − 1)2/T

= − 1
T − 1 . (7)

Thus the regression t-statistic is employed to test the modified null hypothesis
H ′0 : % = %0 = −1/(T − 1). To account for autocorrelation in νit, (HAC) robust
standard errors are employed, yielding the test statistic

LM∗ = %̂− %0

ṽρ
,

where

ṽ2
ρ =

N∑
i=1

ê′iM
′
T ν̃iν̃

′
iMT êi(

N∑
i=1

ê′iM
′
TMT êi

)2 =

N∑
i=1

ê′iM
′
T (M1 − %̂MT )êiê′i(M1 − %̂MT )′MT êi(

N∑
i=1

ê′iM
′
TMT êi

)2 .

As for the WD test, we propose a simplified version of this test that is asymptotically
equivalent to the statistic LM∗.
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Theorem 2. Let

ẑT i =
T∑
t=2

(êit − 1
T

T∑
t=1

êit

)(
êi,t−1 −

1
T

T∑
t=1

êit

)
+ 1
T − 1

(
êi,t−1 −

1
T

T∑
t=1

êit

)2
and denote by L̃M

∗
the corresponding test statistic constructed as in (4).

(i) Under Assumptions 1–2, uit ∼ N (0, σ2
i ), T ≥ 3, and the local alternative

ρN = c/
√
N , the test statistic L̃M

∗
is asymptotically distributed as

N

c κ
√
T − 3 + 2

T 2 − T
, 1
 .

(ii) Under the the local alternative, the statistic L̃M
∗
is asymptotically equivalent

to LM∗.

3.3 A modified Durbin-Watson statistic

The pDW statistic suggested by Bhargava et al. (1982) is the ratio of the sum of
squared differences and the sum of squared residuals. Instead of the ratio (which
complicates the theoretical analysis), our variant of the Durbin-Watson test is based
on the linear combination of the numerator and denominator of the Durbin-Watson
statistic. Let

ẑT i = ê′iMD′DMêi − 2 ê′iMêi , (8)

where D is a (T − 1)× T matrix producing first differences, i.e.

D =



−1 1 0 · · · 0
0 −1 1 · · · 0
... . . . . . . ...
... . . . . . . ...
0 0 0 · · · −1 1


, (9)

and M as defined above. Using tr(MD′DM) = 2(T − 1) and tr(M) = T − 1, it
follows that E(zT i) = 0 for all i, where zT i = e′iMD′DMei − 2 e′iMei.
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The panel test statistic is constructed as in (4), where ẑT i is given by (8). The
resulting test is denoted by mDW. The following theorem presents the asymptotic
distribution of the test statistic.

Theorem 3. Under Assumptions 1–2, uit ∼ N (0, σ2
i ), T ≥ 3, and the local

alternative ρN = c/
√
N , the limiting distribution is

mDW d−→ N
(
−cκ T − 1

T

√
T − 2, 1

)
.

3.4 Relative local power

Theorems 1–3 allow us to compare the asymptotic power of the three different tests.
Let ψWD(T ) = κ(T − 2)/

√
2(T − 3) + 3 denote the Pitman drift of the local power

resulting from Theorem 1(i) and denote by ψLM(T ) and ψmDW (T ) the respective
terms resulting from Theorem 2(i) and Theorem 3. The test A is asymptotically
more powerful than test B for some given value of T if ψA(T )/ψB(T ) > 1, where
A,B ∈ {WD,LM,mDW}. In what follows we use the Pitman drift of the WD test
as a benchmark and define the relative Pitman drift as τLM (T ) = ψLM (T )/ψWD(T )
and τmDW (T ) = ψmDw(T )/ψWD(T ). Figure 1 presents the relative Pitman drifts
of both tests as a function of T . It turns out that for the minimum value of T = 3
the mDW test is asymptotically more powerful among the set of three alternative
tests. For T ≥ 4, however, the LM test is asymptotically most powerful, where
the difference between the LM and the mDW tests diminish as T gets large. The
power gain of both tests relative to the WD test approaches 40 percent in terms of
the Pitman drift of the WD test.

Note that the asymptotic power of some test A ∈ {WD,LM,mDW} is a
nonlinear function of ψA(T ). For small values of c, however, the asymptotic power
is approximately linear. In Table 1 we report the asymptotic power of the tests
(in parentheses) for various values of c and T . For example, consider c = 0.5
and T = 50. The asymptotic power of the LM test relative to the WD test is
0.929/0.683 = 1.36 and the relative asymptotic power of the mDW test results
as 0.923/0.683 = 1.35, which roughly corresponds to the relative Pitman drifts
τLM(50) and τLM(50).
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Figure 1: Comparison of local power functions

4 Higher order autocorrelation

Since the estimation error xit(β̂ − β) in the residuals êit = eit − xit(β̂ − β) is
asymptotically negligible we simplify our notation and write eit instead of êit in
this section.

4.1 The Inoue-Solon statistic

A test for higher order serial correlation in panel data models was proposed by
Inoue and Solon (2006). Due to the fact that the covariance matrix of the demeaned
error vector Σ∗i = E(Meie

′
iM) is singular with rank T − 1, we drop the k’th row

and column of Σ∗i yielding the invertible matrix Σ∗i,k. The null hypothesis of no
autocorrelation implies that Σ∗i,k = σ2

iMk, where Mk results from M by dropping
the k’th row and column ofM . Denote by Si,k the matrix that results from deleting
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the k’th row and columns of Si = Meie
′
iM . The LM statistic is given by

ISk =
(

N∑
i=1

s̃′i,k

)(
N∑
i=1

s̃i,ks̃
′
i,k

)−1 ( N∑
i=1

s̃i,k

)
, (10)

where
s̃i,k = vech(Si,k − σ2

iMk)

and vech(A) denotes the linear operator that stacks all elements of the m × m
matrix A below the main diagonal into a m(m − 1)/2 dimensional vector. In
empirical practice the unknown variances σ2

1, . . . , σ
2
N are replaced by the unbiased

estimate σ̂2
i = (T − 1)−1e′iMei.

An important problem with this test statistic is that it essentially tests a
(T − 2)(T − 1)/2 dimensional null hypothesis. Thus, to yield a reliable asymptotic
approximation of the null distribution, N should be large relative to T 2/2. Another
problem is that the power of the test is poor if only a few autocorrelation coefficients
are substantially different from zero. For example, if the errors are generated by
a first order autoregression with uit = 0.1ui,t−1 + εit, then the second and third
order autocorrelations are as small as 0.01 and 0.001. In such cases, a test that
includes all autocorrelations up to the order T − 1 lacks power. In order to improve
the power of the test statistic in such cases, the test statistic should focus on the
first order autocorrelations. Inoue and Solon (2006) suggest to construct a test
statistic based on the first p autocorrelations by forming the lower-dimensional
vector s̃i(p) = {s̃(ts)

i }1≤t−s≤p with elements

s̃
(ts)
i = (eit − ei)(eis − ei) + σ2

i /T

for all t, s ∈ {1, . . . , T} with 1 ≤ t− s ≤ p. The LM statistic is obtained as in (10)
where the vector s̃i,k is replaced by s̃i(p). The resulting test statistic is denoted
by IS(p) and has an asymptotic χ2 distribution with pT − p(p + 1)/2 degrees of
freedom.
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4.2 Bias-corrected test statistics

An alternative approach to test against autocorrelation of order k is to consider
the k-th order autoregression

eit − ei = %k(ei,t−k − ei) + εit , t = k + 1, . . . , T ; i = 1, . . . , N . (11)

In the following lemma, we present the probability limit of the OLS estimator of
%k for fixed T and N →∞.

Lemma 3. Let %̂k be the pooled OLS estimator of %k in (11). Under Assumption
1 and ρ = 0, we have

%̂k
p−→ − 1

T − 1 ,

for all k ∈ {1, . . . , T − 2}.

Using this lemma, a test for zero autocorrelation at lag k can be constructed based
on the (heteroskedasticity and autocorrelation robust) t-statistic of the hypothesis
%k = −1/(T − 1). An asymptotically equivalent test statistic is obtained by letting

z
(k)
T i =

T∑
t=k+1

[
(eit − ei)(ei,t−k − ei) + 1

T − 1(ei,t−k − ei)2
]

and

L̃M∗k =

N∑
i=1

z
(k)
T i√√√√ N∑

i=1
z

(k)2

T i − 1
N

(
N∑
i=1

z
(k)
T i

)2
. (12)

Along the lines of the proof of Theorem 2, it is not difficult to show that, under
the null hypothesis, L̃M∗k has a standard normal limiting distribution.

In empirical practice it is usually more interesting to test the hypothesis that
the errors are not autocorrelated up to order p. Unfortunately, the probability
limit of the autoregressive coefficients φ1, . . . , φp in the autoregression

eit − ei = φ1(ei,t−1 − ei) + · · ·+ φp(ei,t−p − ei) + υit

is a much more complicated function of T , since the regressors are mutually
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correlated. Instead of presenting the respective probability limits, we therefore
suggest a simple transformation of the regressors such that the autoregressive
coefficients can be estimated unbiasedly under the null hypothesis. Specifically, we
propose an implicit correction that eliminates the bias. In matrix notation, the
(transformed) autoregression is given by

Mei = φ1L1ei + φ2L2ei + · · ·+ φpLpei + υi , (13)

where

Lkei =


0k×1

ei1 − ei
...

ei,T−k − ei

 +
(
T − k
T 2 − T

)
ei ,

where the first vector on the right hand side represents the lagged values of the
demeaned residuals, whereas the second vector is introduced to remove the bias. It
is not difficult to show that

E(e′iMLkei) = −
(
T − k
T

)
σ2
i +

(
T − 1
T

)(
T − k
T − 1

)
σ2
i = 0

for all k = 1, . . . , p and, therefore, under the null hypothesis, the least-squares
estimators of φ1, . . . , φp converge to zero in probability for all T and N →∞. The
null hypothesis φ1 = · · · = φp = 0 can therefore be tested using the associated
Wald statistic

Q(p) = φ̂′Ŝ−1φ̂ , (14)

where

Ŝ =
(

N∑
i=1

Z ′iZi

)−1 ( N∑
i=1

Z ′iυ̂iυ̂
′
iZi

)(
N∑
i=1

Z ′iZi

)−1

is the HAC estimator for the covariance matrix of the vector of coefficients with
φ̂ =

[
φ̂1, . . . , φ̂p

]′
, Zi = [L1ei, . . . , Lpei] and υ̂i = Mei − Ziφ̂. The Q(p) statistic is

asymptotically equivalent to the statistic

Q̃(p) =
N∑
i=1

e′iMZi

[
N∑
i=1

Z ′iMeie
′
iMZi −

1
N

(
N∑
i=1

Z ′iMei

)(
N∑
i=1

e′iMZi

)]−1 N∑
i=1

Z ′iMei .
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Along the lines of Theorem 2, it is straightforward to show that the statistics Q(p)
and Q̃(p) are asymptotically equivalent and have an asymptotic χ2 distribution
with p degrees of freedom.

5 A heteroskedasticity robust test statistic

An important drawback of all test statistics considered so far is that they are not
robust against time dependent heteroskedasticity. This is due to the fact that the
implicit or explicit bias correction of the autocovariances depends on the error
variances. To overcome this drawback of the previous test statistics, we construct
an unbiased estimator of the autocorrelation coefficient. The idea is to apply
backward and forward transformations such that the products of the transformed
series are uncorrelated under the null hypothesis. Specifically, we employ the
following transformations for eliminating the individual effects:

ẽfit = êit −
1

T − t+ 1 (êit + · · ·+ êiT )

ẽbit = êit −
1
t

(êi1 + · · ·+ êit) .

The hypothesis can be tested based on the regression

ẽfit = ψẽbi,t−1 + ωit , t = 3, . . . , T − 1 , (15)

or, in matrix notation,
V0êi = ψV1êi + wi ,

where the (T − 3)× T matrices V0 and V1 are defined as

V0 =


−1

2
1
2 0 0 . . . 0 0 0

−1
3 −1

3
2
3 0 . . . 0 0 0

... ...
− 1
T−2 −

1
T−2 −

1
T−2 −

1
T−2 . . . T−3

T−2 0 0


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and

V1 =


0 0 T−3

T−2 −
1

T−2 −
1

T−2 . . . − 1
T−2 −

1
T−2

0 0 0 T−4
T−3 − 1

T−3 . . . − 1
T−3 −

1
T−3

... ...
0 0 0 0 0 . . . 1

2 −1
2

 .

Under the null hypothesis of no (first order) autocorrelation, we have ψ = 0. Since
the error vector wi is heteroscedastic and autocorrelated, we again employ robust
(HAC) standard errors. The resulting test statistic is equivalent to the test statistic

H̃R =

N∑
i=1

ẑT i√√√√ N∑
i=1

ẑ2
T i − 1

N

(
N∑
i=1

ẑT i

)2
,

where
ẑT i = ê′iAT êi =

T−1∑
t=3

ẽfitẽ
b
i,t−1 with AT = V ′0V1.

Since V0ιT , V1ιT = 0 and tr(V ′0V1) = 0 it follows from Lemma 1 (i) that the test
statistic H̃R has a standard normal limiting null distribution.

6 Monte Carlo Study

This section presents the finite sample performance of the test statistics for serial
correlation and assesses the reliability of the asymptotic results derived in Section
3. We also conduct experiments with different forms of serial correlation and
heteroskedasticity.

The benchmark data generating process for all simulations is a linear panel
data model of the form

yit = xitβ + µi + uit,

where i = 1, . . . , 5004 and various values of T . We set β to 1 in all simulations and
draw the individual effects µi from a N (0, 2.52) distribution. To create correlation

4The cross-sectional dimension is held constant at N = 500, results for smaller N are
qualitatively similar. Values of c = 0, c = 0.5, and c = 1 therefore imply ρ = 0, ρ = 0.0244, and
ρ = 0.0447, respectively.
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between the regressor and the individual effect, we follow Drukker (2003) by drawing
x0
it from a N (0, 1.82) distribution and computing xit = x0

it + 0.5µi. The regressor is
drawn once and then held constant for all experiments. In our benchmark model,
the disturbance term follows an autoregressive process of order 1:

uit = ρui,t−1 + εit ,

where εit ∼ N (0, 1) and we discard the first 100 observations to eliminate the
influence of the initial value.5

Table 1 compares the size and power of alternative test statistics where, ac-
cording to our theoretical analysis, we let ρN = c/

√
N . The empirical values are

computed using 10,000 Monte Carlo simulations, while the asymptotic values (given
in parentheses) are computed according to the results given in Theorems 1 – 3. All
tests exhibit good size control (i.e. for c = 0 the actual size is close to the nominal
size). They reject the null hypothesis of no serial correlation slightly more often
than the nominal size of 5% but are never above 6%. In all cases, the LM statistic
has superior power compared to the competing statistics. While the modified
Durbin-Watson statistic performs similar to the LM statistic, the WD test exhibit
considerably less power.

To evaluate the small-sample properties of the test for higher-order autocor-
relation Q̃(p), we simulate a model with disturbances following a second-order
autoregressive process:

AR(2): uit = α1ui,t−1 + α2ui,t−2 + εit ,

where again εit ∼ N (0, 1) and we discard the first 100 observations to eliminate
the influence of the initial value. The results for three different AR(2) processes
are presented in Table 2. The Q̃(2) statistic has good power properties in all
configurations considered. Not surprisingly, the WD test exhibit high power when
α1 = 0.03 and α2 = −0.03 or α1 = 0 and α2 = 0.08. As mentioned in Remark
2, however, the WD (and W̃D) statistic is a test of the difference between the
first and second order autocorrelation of the errors. As a consequence, it also has

5As suggested by a referee, we also consider non-Gaussian error distributions. The results
were very similar and can be obtained on request.
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power against most AR(2) alternatives. However, choosing α1 = α2 = 0.03, which
implies equal first- and second-order autocorrelations of uit, leads to a complete
loss of power of the WD test, confirming our considerations in Remark 2. The LM
statistic has less power than the Q̃(2) statistic, in particular for the setup with
α1 = 0 and α2 = 0.08.

In the last two columns of Table 2 we present the original portmanteau statistic
ISk with k = 1 and the IS(2) statistic that is based on all autocorrelation up to
to the lag order p = 2 (see section 4). Note that for a sample with N = 500 the
inverse of ISk does not exist for T > 20. It turns out that for the AR(2) alternatives
considered in this Monte Carlo experiment6 the Q̃(2) statistics has substantially
more power than the variants of the IS statistic.

Next, we consider four different types of time-dependent heteroskedasticity by
using the following error process:

uit =
√
htεit ,

where εit ∼ N (0, 1). The first model implies a break in the variance function,
i.e. ht = 10 for t = 1, . . . , T/5 and ht = 1 otherwise. The second specification
is a U-shaped variance function of the form ht = (t − T/2)2 + 1. The third and
fourth types of heteroskedasticity are positive and negative exponential variance
functions, i.e. ht = exp(−0.2t) and ht = exp(0.2t), respectively. Table 3 shows
that the modified Durbin-Watson test has massive size distortions under all four
types of heteroskedasticity. While the WD test has the proper size in case of a
U-shaped variance function, the break in the variance function and the exponential
variance functions lead to large size distortions. The modified LM statistic does
surprisingly well under heteroskedasticity, but for small T we observe also some
size distortions, especially for the negative exponential variance function. On the
other hand our proposed heteroskedasticity-robust test statistic retains its correct
size under all types of heteroskedasticity considered here.

6We also considered a wide range of other combinations of α1 and α2. In all cases the Q̃(2)
turns out to be more powerful than the IS statistics.
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7 Conclusion

This paper proposes various tests for serial correlation in fixed-effects panel data
regression models with a small number of time periods. First, a simplified version
of the test suggested by Wooldridge (2002) and Drukker (2003) is considered. The
second test is based on the LM statistic suggested by Baltagi and Li (1995), and
the third test is a modification of the classical Durbin-Watson statistic. Under the
null hypothesis of no serial correlation, all tests possess a standard normal limiting
distribution as N → ∞ and T is fixed. Analyzing the local power of the tests,
we find that the LM statistic has superior power properties. We also propose a
generalization to test for autocorrelation up to some given lag order and a test
statistic that is robust against time dependent heteroskedasticity.
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Appendix: Proofs

Proof of Lemma 1:

(i) Let yi = [yi1, . . . , yiT ]′ and Xi = [xi1, . . . , xiT ]′. The residual vector can be
written as

êi = ei −Xi(β̂ − β) .

The following lemma implies that the estimation error in the residuals êit is
asymptotically negligible.

Lemma A.1. Under Assumptions 1 and 2 it holds that

(i) 1√
N

N∑
i=1

ê′iAT êi = 1√
N

N∑
i=1

e′iAT ei +Op(N−1)

(ii) 1
N

N∑
i=1

(ê′iAT êi)2 = 1
N

N∑
i=1

(e′iAT ei)2 +Op(N−1/2).

Proof: Let
N∑
i=1

ê′iAT êi =
N∑
i=1

e′iAT ei +
N∑
i=1

δi

where

δi = −e′i(AT + A′T )Xi(β̂ − β) + (β̂ − β)′X ′iATXi(β̂ − β)

= −u′i(AT + A′T )Xi(β̂ − β) + (β̂ − β)′X ′iATXi(β̂ − β)

(i) We have

|| 1
N

N∑
i=1
e′i(AT + A′T )Xi(β̂ − β)|| ≤ || 1

N

N∑
i=1
u′i(AT + A′T )Xi|| · ||β̂ − β||

Using Assumption 2 and Chebyshev’s inequality yields

1
N

N∑
i=1

u′i(AT + A′T )Xi = Op(N−1/2)
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and, therefore, from Assumption 1 (c) we conclude
∣∣∣∣∣
∣∣∣∣∣ 1
N

N∑
i=1

u′iATXi

∣∣∣∣∣
∣∣∣∣∣ · ||β̂ − β|| = Op(N−1) .

(ii) Consider

|ê′iAT êi| − |e′iAT ei| ≤ |δi|,

(ê′iAT êi)
2 − (e′iAT ei)

2 ≤ 2 |δi| · |u′iATui|+ δ2
i ,

with

δ2
i ≤ 2

{[
u′i(AT + A′T )Xi(β̂ − β)

]2
+
[
(β̂ − β)′X ′iATXi(β̂ − β)

]2}
.

We have

1
N

N∑
i=1
|u′i(AT + A′T )Xi(β̂ − β)|2 ≤ ||AT + A′T ||2

(
1
N

N∑
i=1
||u′iXi||2

)
(β̂ − β)′(β̂ − β)

= Op(N−1)

and

1
N

N∑
i=1

[
(β̂ − β)′X ′iATXi(β̂ − β)

]2
≤ ||AT ||2

(
1
N

N∑
i=1
||X ′iXi||2

)
||β̂ − β)||4

= Op(N−2) .

It follows that

1
N

N∑
i=1

δ2
i = Op(N−1).

Since

1
N

N∑
i=1
|δi| |u′iATui| ≤

(
1
N

N∑
i=1

δ2
i

)1/2 ( 1
N

N∑
i=1

(u′iATui)2
)1/2

= Op(N−1/2)
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we finally obtain

1
N

N∑
i=1

(ê′iAT êi)
2 − 1

N

N∑
i=1

(e′iAT ei)
2 = Op(N−1/2).

�

Since E(u′iATui) = σ2
i tr(AT ) = 0 and there exist some real number M such

that 1/M < var(u′iATui) < M it follows from the Lindeberg-Feller central limit
theorem that

λNT =

N∑
i=1

ẑT i√
N∑
i=1

ẑ2
T i

+ op(1) d−→ N (0, 1).

(ii) Under the sequence of local alternatives, we have

Ω = E(uiu′i) = σ2
i

1− ρ2
N


1 ρN ρ2

N · · · ρT−1
N

ρN 1 ρN · · · ρT−2
N

... ...
ρT−1
N ρT−2

N ρT−3
N · · · 1


= σ2

i

1− c/N
IT + c σ2

i

(1− c/N)
√
N
HT +O(N−1)CT

= σ2
i IT + c σ2

i√
N
HT +O(N−1)C∗T

where CT and C∗T are T × T matrices with bounded elements and HT is a matrix
with elements hts = 1 if |t− s| = 1 and zeros elsewhere. Since tr(AT ) = 0 it follows
that

E(u′iATui) = tr(ATΩ) = σ2
i tr(AT ) + σ2

i c√
N
tr(ATHT ) +O(N−1)

= σ2
i c√
N
tr(ATHT ) +O(N−1) .

Using standard results for the variance of quadratic forms of normally distributed
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random variables7 (e.g. Searle, 1971), we have

var(u′iATui) = σ4
i tr(A2

T + A′TAT ) +O(N−1/2) .

It follows from the Lindeberg-Feller central limit theorem

1√
N

N∑
i=1

u′iATui
p−→ N

(
cm2tr(ATHT ),m4 tr(A2

T + A′TAT )
)
,

where m2 and m4 are defined in Lemma 1.
For the second moment we obtain from the law of large numbers

1
N

N∑
i=1

(ê′iAT êi)2 = 1
N

N∑
i=1

(
u′iATui +Op(N−1/2)

)2

= 1
N

N∑
i=1

(u′iATui)
2 +Op(N−1/2)

p−→ m4 tr(A2
T + A′TAT ) .

Furthermore, under the sequence of local alternatives

1
N

(
1√
N

N∑
i=1

ê′iAT êi

)2

= Op(N−1)

and, therefore, the second term of the denominator in (4) does not affect the
limiting distribution.

It follows that the limiting distribution of the test statistic is given by

λNT =
1√
N

N∑
i=1

u′iATui√
1
N

∑N
i=1 (u′iATui)

2
+ op(1) d−→ N

c κ tr(ATHT )√
tr(A2

T + A′TAT )
, 1
 .

Proof of Theorem 1:

(i) Let Dk denote a (T − 2) × T matrix that results from dropping the k’th
row of the first difference matrix D defined in (9). Using Lemma A.1 we have

7Note that for non-symmetric AT the expression can be rewritten in a symmetric format as
u′iATui = 0.5[ui(AT +A′T )ui].
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N−1/2∑N
i=1 ẑT i = N−1/2∑N

i=1 zT i +Op(N−1), where

zT i = e′i(D′T−1D1 + 0.5D′T−1DT−1)ei ≡ e′iAT ei .

For T ≥ 3

AT =



0.5 −0.5 0 0 0 0 · · · 0 0 0 0 0 0
0.5 0 −0.5 0 0 0 · · · 0 0 0 0 0 0
−1 1.5 0 −0.5 0 0 · · · 0 0 0 0 0 0
0 −1 1.5 0 −0.5 0 · · · 0 0 0 0 0 0
0 0 −1 1.5 0 −0.5 · · · 0 0 0 0 0 0
...

... · · ·
...

...
0 0 0 0 0 0 · · · −1 1.5 0 −0.5 0 0
0 0 0 0 0 0 · · · 0 −1 1.5 0 −0.5 0
0 0 0 0 0 0 · · · 0 0 −1 1.5 −0.5 0
0 0 0 0 0 0 · · · 0 0 0 −1 1 0



.

For example,

A3 =


0
−1
1

 [−1 1 0
]

+ 0.5


−1
1
0

 [−1 1 0
]

=


−0.5
−0.5

1

 [−1 1 0
]

=


0.5 −0.5 0
0.5 −0.5 0
−1 1 0

 .

Obviously, tr(AT ) = 0, AT ιT = 0 and ι′TAT = 0. If uit iid∼ N(0, σ2
i ), the variance of

the quadratic form e′iAT ei = u′iATui is σ4
i tr(A2

T + A′TAT ), where

tr(A2
T ) = −3

2(T − 3)

tr(A′TAT ) = 3 + 7(T − 3)
2 .
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It follows that var(e′iAT ei) = σ4
i [2(T − 3) + 3]. Furthermore,

tr(ATHT ) = T − 2

and, by using Lemma 1, we obtain

W̃D d−→ N

c κ(T − 2)√
2(T − 3) + 3

, 1
 .

(ii) The original version of the WD test can be written as

WD =

N∑
i=1

ẑT i√√√√ N∑
i=1

(
T∑
t=3

∆êi,t−1(∆êit − θ̂∆êi,t−1)
)2

=
1√
N

N∑
i=1

ẑT i√√√√ 1
N

N∑
i=1

(
T∑
t=3

∆êi,t−1(∆êit + 0.5∆êi,t−1)− (θ̂ + 0.5)∆ê2
t−1

)2

=
1√
N

N∑
i=1

ẑT i√√√√ 1
N

N∑
i=1

(
T∑
t=3

∆êi,t−1(∆êit + 0.5∆êi,t−1)
)2

+Op(N−1/2)

=
1√
N

N∑
i=1

ẑT i√
1
N

N∑
i=1

ẑ2
T i

+Op(N−1/2) ,

where θ̂ + 0.5 = Op(N−1/2) under the null hypothesis and local alternative. Fur-
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thermore, by using the results in the proof of Lemma 1:

W̃D =

N∑
i=1

ẑT i√√√√ N∑
i=1

ẑ2
T i − 1

N

(
N∑
i=1

ẑT i

)2

=
1√
N

N∑
i=1

ẑT i√
1
N

N∑
i=1

ẑ2
T i

+Op(N−1/2)

It follows that WD− W̃D = Op(N−1/2).

Proof of Lemma 2:

For the first order autocorrelation, Cox and Solomon (1988) derive the following
asymptotic approximation:

√
N


N∑
i=1

T∑
t=2

(uit − ui)(ui,t−1 − ui)
N∑
i=1

T∑
t=1

(uit − ui)2

 d−→ N
(
− 1
T
,
(T + 1)(T − 2)2

T 2(T − 1)2

)
.

Using this result, the limiting distribution of the LM statistic is easily derived.

Proof of Theorem 2:

(i) As shown in the proof of Lemma 1 we have ẑT i = e′iAT ei + op(1). Using the
matrix notation introduced in section 3.2, AT = M ′

1MT + 1
T−1M

′
TMT . Let Sk

denote a selection matrix that is obtained from dropping the k’th row of IT . Since
MT ιT = STMιT = 0 and M1ιT = S1MιT = 0, it follows that AT ιT = 0 and
A′T ιT = 0. Since tr(M ′

1MT ) = tr(MS ′1STM) = tr(STMS ′1) = −(T − 1)/T and
tr(M ′

TMT ) = tr(STMS ′T ) = (T − 1)− (T − 1)/T it follows that tr(AT ) = 0. Thus,

zT i = e′iAT ei = u′iATui .
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The variance of zT i is obtained as var(zT i) = σ4
i tr(A2 +AA′) by using the following

results:

tr(M ′
1MTM

′
1MT ) = −(T 2 − 2T − 1)/T 2

tr(M ′
1MTM

′
TM1) = tr(M ′

TMTM
′
TMT ) = (T 3 − 2T 2 + 1)/T 2

tr(M ′
1MTM

′
TMT ) = tr(M ′

TMTM
′
1MT ) = tr(M ′

TMTM
′
TM1) = −(T 2 − T − 1)/T 2 .

It follows that
var(zT i) = σ4

i

(
T − 3 + 2

T (T − 1)

)
.

Furthermore,

tr(M ′
1MTHT ) = tr(S ′TMHTMS1) = tr(S ′THTS1)−2T−1tr(S ′T ιT ι′THTS1)+T−2tr(S ′T ιT ι′THT ιT ι

′
TS1) .

Using

tr(S ′THTS1) = T − 1

tr(S ′THTST ) = 0

tr(S ′T ιT ι′THTS1) = tr(S ′T ιT ι′THTST ) = 2(T − 1)− 1

tr(S ′T ιT ι′THT ιT ι
′
TS1) = tr(S ′T ιT ι′THT ιT ι

′
TST ) = 2(T − 1)2

yields

tr(ATHT ) = tr
(
M ′

1MTHT −
1

T − 1M
′
1MTHT

)
= T − 3 + 2

T (T − 1) ,

which is identical to tr(A2
T + A′TAT ). With these results the limiting distribution

follows.
(ii) Using %̂+ 1

T−1 = Op(N−1/2) and êi = T−1∑T
t=1 êit the LM∗ statistic can be
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written as

LM∗ =

N∑
i=1

ẑT i√√√√ N∑
i=1

[
T∑
t=2

(êi,t−1 − êi)
(
êit − %̂êi,t−1 − (1− %̂)êi

)]2

=
1√
N

N∑
i=1

ẑT i√√√√ 1
N

N∑
i=1

[
T∑
t=2

(êit − êi)(êi,t−1 − êi) + (T − 1)−1
T∑
t=2

(êit − êi)2 +Op(N−1/2)
]

=
1√
N

N∑
i=1

ẑT i√
1
N

N∑
i=1

ẑ2
T i

+Op(N−1/2).

Furthermore, under the null hypothesis and local alternative

L̃M∗ =
1√
N

N∑
i=1

zT i√
1
N

N∑
i=1

z2
Ti

+Op(N−1/2) .

Proof of Theorem 3:

By Lemma A.1 we have

N−1/2
N∑
i=1

ẑT i = N−1/2
N∑
i=1

e′iM(D′D−2IT )Mei+Op(N−1) = u′iATui+Op(N−1) ,

where

D′D − 2IT =



−1 −1 0 0 · · · 0 0 0
−1 0 −1 0 · · · 0 0 0
0 −1 0 −1 · · · 0 0 0
... ...
0 0 0 0 · · · −1 0 −1
0 0 0 0 · · · 0 −1 −1


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is a symmetric T × T matrix. Since MιT = M ′ιT = 0 it follows that AT ιT =
A′T ιT = 0. Furthermore, tr[M(D′D−2IT )M ] = tr(D′D−2IT )−ι′T (D′D−2IT )ιT =
−2 + 2 = 0.

The variance is obtained as

var(zT i) = 2σ4
i tr(A2

T )

= 4σ4
i (T − 2) .

Furthermore,
tr(ATHT ) = −T − 1

T
2(T − 2) .

It follows from Lemma 1 that under the local alternative

mDW d−→ N
(
c κ
T − 1
T

√
T − 2, 1

)
.

Proof of Lemma 3:

Rewrite equation (11) in matrix terms as

L̃0Mêi = %kL̃kMêi + εi ,

where

L̃0 =



0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 ...
... ... ... . . . 0
0 · · · 0 0 · · · 0 1

 L̃k =



1 0 · · · 0 0 · · · 0
0 1 ... 0 · · · 0
... . . . 0 ... ...
0 · · · 0 1 0 · · · 0


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are (T − k)× T matrices. Under Assumption (1) and using the following results:

tr(ML̃′kL̃0M) = tr
[(
L̃′k −

1
T
ιT ι
′
T L̃
′
k

)
L̃0

]
= tr

(
L̃′kL̃0

)
− 1
T
tr
(
ι′T L̃

′
kL̃0ιT

)
= −T − k

T
,

tr(ML̃′kL̃kM) = tr
[(
L̃′k −

1
T
ιT ι
′
T L̃
′
k

)
L̃k

]
= tr

(
L̃′kL̃k

)
− 1
T
tr
(
ι′T L̃

′
kL̃kιT

)
= (T − 1)T − k

T
,

it follows as N →∞:

%̂k
p−→ tr(ML̃′kL̃0M)

tr(ML̃′kL̃kM)
= = − 1

T − 1 ,

for all k ∈ {1, . . . , T − 2}.
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Table 1: Size and power of alternative tests

T WD W̃D LM∗ L̃M∗ mDW
c = 0

5 0.050 0.049 0.054 0.052 0.055

10 0.050 0.050 0.054 0.054 0.051

20 0.049 0.049 0.047 0.047 0.045

30 0.052 0.051 0.052 0.052 0.052

50 0.049 0.049 0.047 0.047 0.048

c = 0.5
5 0.092 0.097 0.111 0.109 0.107

(0.088) (0.088) (0.112) (0.112) (0.107)
10 0.169 0.177 0.264 0.263 0.251

(0.163) (0.163) (0.263) (0.263) (0.247)
20 0.311 0.320 0.532 0.531 0.509

(0.316) (0.316) (0.541) (0.541) (0.522)
30 0.449 0.457 0.735 0.735 0.720

(0.458) (0.458) (0.738) (0.738) (0.725)
50 0.672 0.679 0.929 0.929 0.923

(0.683) (0.683) (0.929) (0.929) (0.924)
c = 1

5 0.210 0.219 0.292 0.288 0.282
(0.205) (0.205) (0.305) (0.305) (0.283)

10 0.493 0.502 0.751 0.750 0.718
(0.492) (0.492) (0.755) (0.755) (0.721)

20 0.833 0.839 0.987 0.987 0.983
(0.841) (0.841) (0.985) (0.985) (0.981)

30 0.954 0.955 1.000 1.000 0.999
(0.960) (0.960) (0.999) (0.999) (0.999)

50 0.998 0.998 1.000 1.000 1.000
(0.998) (0.998) (1.000) (1.000) (1.000)

Note: N = 500. Empirical values are computed using
10,000 Monte Carlo simulations. Asymptotic values (given
in parentheses) are computed according to the results in
Theorems 1 – 3.
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Table 2: AR(2) processes

T WD W̃D LM∗ L̃M∗ mDW Q̃(2) ISk IS(2)
α1 = 0, α2 = 0

5 0.048 0.048 0.049 0.047 0.051 0.052 0.049 0.050
10 0.050 0.049 0.051 0.051 0.049 0.050 0.063 0.053
20 0.050 0.049 0.049 0.049 0.048 0.049 0.067 0.045
30 0.053 0.052 0.055 0.055 0.055 0.053 na 0.041
50 0.054 0.054 0.056 0.056 0.055 0.057 na 0.036

α1 = 0.03, α2 = −0.03
5 0.342 0.353 0.351 0.346 0.286 0.322 0.165 0.178
10 0.745 0.754 0.600 0.598 0.554 0.696 0.212 0.310
20 0.976 0.977 0.862 0.861 0.847 0.962 0.189 0.461
30 0.999 0.999 0.957 0.957 0.951 0.996 na 0.579
50 1.000 1.000 0.997 0.997 0.997 1.000 na 0.703

α1 = α2 = 0.03
5 0.049 0.048 0.068 0.066 0.073 0.096 0.068 0.081
10 0.048 0.049 0.266 0.264 0.267 0.436 0.134 0.179
20 0.049 0.048 0.687 0.686 0.675 0.913 0.152 0.327
30 0.052 0.052 0.892 0.892 0.888 0.988 na 0.450
50 0.054 0.054 0.990 0.990 0.989 1.000 na 0.611

α1 = 0, α2 = 0.08
5 0.524 0.500 0.376 0.371 0.252 0.591 0.289 0.369
10 0.932 0.926 0.226 0.225 0.175 0.984 0.542 0.775
20 0.999 0.999 0.137 0.137 0.124 1.000 0.586 0.986
30 1.000 1.000 0.106 0.106 0.101 1.000 na 0.999
50 1.000 1.000 0.085 0.085 0.081 1.000 na 1.000
Note: N = 500. Rejection frequencies are computed using 10,000 Monte Carlo
replications. Note that the IS test statistics cannot be computed if the degrees
of freedom are larger than N (na).
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Table 3: Size under temporal heteroskedasticity

T W̃D L̃M∗ mDW HR W̃D L̃M∗ mDW HR
break in variance u-shaped variance

5 1.000 1.000 1.000 0.049 0.052 0.169 1.000 0.048
10 1.000 0.374 1.000 0.052 0.053 0.119 1.000 0.049
20 0.993 0.081 0.927 0.051 0.053 0.063 1.000 0.051
30 0.905 0.062 0.751 0.050 0.051 0.053 1.000 0.050
50 0.670 0.051 0.504 0.050 0.049 0.050 0.996 0.049

negative exponential trend (-0.2) positive exponential trend (0.2)
5 0.798 0.185 0.080 0.054 0.591 0.122 0.080 0.053
10 0.992 0.125 0.353 0.051 0.931 0.069 0.361 0.049
20 1.000 0.088 0.924 0.049 0.988 0.054 0.922 0.053
30 1.000 0.075 0.993 0.053 0.990 0.051 0.993 0.049
50 1.000 0.057 1.000 0.051 0.990 0.047 1.000 0.049

Note: N = 500. Rejection frequencies are computed using 10,000 Monte Carlo
replications.
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