Fiscal News and Macroeconomic Volatility

Online Appendix

Benjamin Born Alexandra Peter Johannes Pfeifer

January 29, 2014

1 IRFs to Government Spending Shocks

Figure 1 displays the impulse responses to one percent surprise (solid line) and anticipated (dashed line) increases in government spending. ${ }^{1}$ The bottom row shows that the government spending shocks are both relatively persistent and lead to a significant deterioration of the government budget, resulting in a large and persistent buildup of debt. This debt buildup via the feedback embedded in the fiscal rule somewhat dampens the persistence in government spending, which would be even larger otherwise. The fiscal feedback is also responsible for the behavior of the capital and the labor tax rate. The former falls due to the increase in debt and the decrease of investment that results from a crowding out effect. In contrast, labor taxes rise due to the debt feedback and the positive feedback from the increase in labor services.

First, consider the surprise government spending shock. As would be expected, it acts like a standard demand shock, driving up output and inflation, and crowding out investment and consumption. As households tap into the capital stock to produce the additional government consumption while keeping up private consumption, they ramp up capacity utilization so that capital services increase. At the same time, households start working more, with an additional incentive to increase labor supply stemming from the higher marginal product of labor due to the increase in capital services. When capital services return to their steady state, this substitution effect dissipates and the wealth effect on labor supply, which was estimated to be small, starts to dominate. As a result, the real wage drops below steady state. The responses to the surprise government shock are similar to the responses to a spending

[^0]

Figure 1: Impulse responses to unanticipated and anticipated government spending shocks. Notes: solid line: impulse responses to an unanticipated 1 percent increase in government spending g_{t}; dashed line (short-dashed for after-tax measures): impulse responses to an eight period anticipated 1 percent increase in government spending g_{t} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.
"news"-shock in Ramey (2011). ${ }^{2}$ As in her study, spending, output, hours and labor income taxes rise, while consumption and investment fall. Moreover, the implied peak multiplier in her study is between 1.1 and 1.2 , while it is about 0.9 in our baseline model.

Second, for the anticipated government spending shock, agents again have more time to adjust. Due to strong consumption habits, consumption starts falling immediately. Moreover, to save investment adjustment costs, households gradually reduce investment in order for it to be low when the government spending shock realizes and disinvestment is needed most. At the same time, capacity utilization u_{t} and thus capital depreciation $\delta\left(u_{t}\right)$ falls during the anticipation phase. The resulting resource savings from the lower capital depreciation rate temporarily overcompensate the disinvestment in capital so that the physical capital stock actually rises while capital services fall (the impulse responses for capacity utilization and capital stock are omitted for brevity). The lower capital services also depress the real wage via their effect on the marginal product of labor. This substitution effect overcompensates the wealth effect on the labor supply. The larger capital stock that is built up during the anticipation phase is used up when the shock actually realizes. In this case, households still disinvest, but ramp up capital utilization, so that capital services now rise. This increases the depreciation of the capital stock, which starts to fall. The increase in capital services upon realization of the shock is similar to the response of the surprise shock and thus also triggers a similar response of the real wage and, correspondingly, of labor services.

[^1]
2 IRFs to Fiscal Shocks (Federal)

Figure 2: Impulse responses to unanticipated and anticipated capital tax shocks (left panel) and labor tax shocks (right panel), using federal government data only.
Notes: solid line: impulse responses to an unanticipated 1 percent increase in the respective tax rate; dashed line: impulse responses to an eight period anticipated 1 percent increase in the respective tax rate that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are semi-elasticities and measured in percentage deviations from steady state.

3 Additional and Expanded Tables

Table 1: Parameters fixed prior to estimation

Parameter	Value	Target/Motivation (matched to quarterly data)
σ_{c}	2	Common in RBC models
γ	0.00064	Set labor effort in steady state to 20%
β	0.99	Common in RBC models
δ_{0}	0.025	Annual physical depreciation of 10%
δ_{1}	0.0484	Set capacity utilization $u=1$ in steady state
δ_{τ}	0.05	Twice the rate of physical depreciation δ_{0} (Auerbach, 1989)
α	0.3253	Match capital share in output
ψ	0.055	Set profits to zero
η_{p}	10	Set price markup to 11\% in steady state
η_{w}	10	Set wage markup to 11\% in steady state
μ^{y}	1.0045	Match average sample growth rate of per capita output
μ^{a}	0.9957	Match average sample growth rate of relative price of investment
τ^{n}	0.207	Match average sample labor tax rate
τ^{k}	0.387	Match average sample capital tax rate
G / Y	0.2038	Match average sample mean
B / Y	2	Match average sample gross federal debt to GDP ratio of 50%
T	-0.0145	Balance government budget in steady state
Π	1.0089	Match average sample mean

Table 2: Prior and Posterior Distributions

Parameter	Prior distribution			Posterior distribution				Federal
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent	Mean
Preference and Technology Parameters								
χ_{w}	Beta	0.50	0.20	0.583	0.087	0.439	0.728	0.661
χ_{p}	Beta	0.50	0.20	0.005	0.003	0.001	0.011	0.004
θ_{p}	Beta	0.50	0.20	0.715	0.010	0.699	0.731	0.881
θ_{w}	Beta	0.50	0.20	0.622	0.020	0.588	0.653	0.486
σ_{l}	Gamma	2.00	0.75	0.786	0.110	0.610	0.969	2.598
σ_{s}	Beta	0.50	0.20	0.047	0.004	0.041	0.054	0.020
κ	Gamma	4.00	1.50	4.069	0.198	3.737	4.394	3.901
δ_{2} / δ_{1}	Inv.-Gamma	0.50	0.15	0.110	0.005	0.102	0.118	0.090
ϕ_{c}	Beta	0.70	0.10	0.939	0.006	0.928	0.948	0.864

Table 2: Prior and Posterior Distributions - Continued

Parameter	Prior distribution			Posterior distribution				Federal
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent	Mean
Preference Shock								
$\rho_{\text {pref }}$	Beta	0.50	0.20	0.085	0.032	0.034	0.139	0.106
$\sigma_{\text {pref }}$	Inv.-Gamma	0.10	2.00	12.277	1.219	10.211	14.315	5.488
Wage Markup Shock								
ρ_{w}	Beta	0.50	0.20	0.964	0.005	0.956	0.972	0.988
σ_{w}	Inv.-Gamma	0.10	2.00	15.128	1.180	13.161	17.123	0.031
σ_{w}^{4}	Inv.-Gamma	0.10	2.00	0.033	0.019	0.025	0.066	7.786
σ_{w}^{8}	Inv.-Gamma	0.10	2.00	12.309	1.415	10.018	14.650	0.031
Stationary Technology Shock								
ρ_{z}	Beta	0.50	0.20	0.952	0.004	0.945	0.959	0.908
σ_{z}	Inv.-Gamma	0.10	2.00	0.458	0.030	0.408	0.505	0.553
σ_{z}^{4}	Inv.-Gamma	0.10	2.00	0.543	0.028	0.494	0.587	0.128
σ_{z}^{8}	Inv.-Gamma	0.10	2.00	0.505	0.030	0.458	0.554	0.502
Non-Stationary Technology Shock								
ρ_{x}	Beta	0.50	0.20	0.623	0.023	0.583	0.658	0.455
σ_{x}	Inv.-Gamma	0.10	2.00	0.402	0.029	0.355	0.450	0.588
σ_{x}^{4}	Inv.-Gamma	0.10	2.00	0.394	0.028	0.346	0.439	0.591
σ_{x}^{8}	Inv.-Gamma	0.10	2.00	0.329	0.030	0.281	0.378	0.245
Stationary Investment-Specific Productivity Shock								
$\rho_{z I}$	Beta	0.50	0.20	0.967	0.004	0.960	0.973	0.998
$\sigma_{z I}$	Inv.-Gamma	0.10	2.00	0.357	0.021	0.324	0.393	0.354
$\sigma_{z I}^{4}$	Inv.-Gamma	0.10	2.00	0.040	0.032	0.022	0.116	0.083
$\sigma_{z I}^{8}$	Inv.-Gamma	0.10	2.00	0.032	0.013	0.025	0.057	0.031
Non-Stationary Investment-Specific Productivity Shock								
ρ_{a}	Beta	0.50	0.20	0.843	0.010	0.826	0.859	0.955
σ_{a}	Inv.-Gamma	0.10	2.00	0.199	0.012	0.180	0.219	0.086
σ_{a}^{4}	Inv.-Gamma	0.10	2.00	0.158	0.013	0.137	0.180	0.065
σ_{a}^{8}	Inv.-Gamma	0.10	2.00	0.166	0.011	0.148	0.185	0.092

Table 2: Prior and Posterior Distributions - Continued

Parameter	Prior distribution			Posterior distribution				Federal
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent	Mean
Government Spending Shock								
ρ_{g}	Beta	0.50	0.20	0.976	0.002	0.973	0.980	0.960
$\rho_{x g}$	Beta	0.50	0.20	0.931	0.011	0.913	0.949	0.826
σ_{g}	Inv.-Gamma	0.10	2.00	0.033	0.017	0.025	0.060	0.030
σ_{g}^{4}	Inv.-Gamma	0.10	2.00	0.033	0.021	0.024	0.067	0.033
σ_{g}^{8}	Inv.-Gamma	0.10	2.00	1.602	0.023	1.563	1.640	2.404
$\phi_{g D}$	Normal	0.00	1.00	-0.003	0.000	-0.004	-0.003	-0.009
Labor Tax Shock								
$\rho_{\tau n}$	Beta	0.70	0.20	0.936	0.012	0.914	0.953	0.998
$\sigma_{\tau n}$	Inv.-Gamma	0.10	2.00	0.227	0.061	0.132	0.335	0.174
$\sigma_{\tau n}^{4}$	Inv.-Gamma	0.10	2.00	0.213	0.104	0.025	0.333	0.215
$\sigma_{\tau n}^{8}$	Inv.-Gamma	0.10	2.00	0.049	0.064	0.024	0.243	0.270
$\phi_{n D}$	Normal	0.00	1.00	0.003	0.001	0.002	0.004	0.001
$\phi_{n l}$	Normal	0.00	1.00	0.021	0.004	0.015	0.028	0.028
Capital Tax Shock								
$\rho_{\tau k}$	Beta	0.70	0.20	0.765	0.024	0.724	0.802	0.875
$\sigma_{\tau k}$	Inv.-Gamma	0.10	2.00	0.929	0.079	0.796	1.055	1.060
$\sigma_{\tau k}^{4}$	Inv.-Gamma	0.10	2.00	0.898	0.091	0.739	1.043	1.173
$\sigma_{\tau k}^{8}$	Inv.-Gamma	0.10	2.00	1.078	0.080	0.938	1.206	1.298
$\phi_{k D}$	Normal	0.00	1.00	-0.002	0.001	-0.003	-0.001	-0.001
$\phi_{k I}$	Normal	0.00	1.00	0.019	0.003	0.015	0.023	-0.009
Tax Shock Correlations								
$\left\{\varepsilon_{\tau k}, \varepsilon_{\tau n}\right\}$	Beta*	0.00	0.30	0.517	0.122	0.316	0.715	-0.103
$\left\{\varepsilon_{\tau k}^{4}, \varepsilon_{\tau n}^{4}\right\}$	Beta*	0.00	0.30	-0.165	0.149	-0.392	0.083	-0.727
$\underline{\left\{\varepsilon_{\tau k}^{8}, \varepsilon_{\tau n}^{8}\right\}}$	Beta*	0.00	0.30	0.055	0.212	-0.292	0.408	-0.456
Monetary Policy								
ρ_{R}	Beta	0.50	0.20	0.828	0.007	0.815	0.840	0.864
σ_{R}	Inv.-Gamma	0.10	2.00	0.386	0.019	0.358	0.420	0.317
$\phi_{R_{\text {II }}}$	Gamma	1.50	3.00	2.265	0.041	2.202	2.335	2.392
$\phi_{R_{Y}}$	Gamma	0.50	3.00	0.000	0.000	0.000	0.000	0.000

Table 2: Prior and Posterior Distributions - Continued

Parameter	Prior distribution			Posterior distribution				Federal
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent	Mean
Measurement Error								
$\sigma_{y}^{m e}$	Uniform	0.01	0.01	0.000	0.000	0.000	0.000	0.000
$\sigma_{w}^{m e}$	Uniform	0.07	0.04	0.142	0.000	0.142	0.142	0.142
$\sigma_{\tau n}^{m e}$	Uniform	0.46	0.26	0.234	0.024	0.193	0.272	0.318
$\sigma_{\tau k}^{m e}$	Uniform	0.40	0.23	0.792	0.000	0.792	0.792	0.792

Notes: The standard deviations of the shocks and measurement errors have been transformed into percentages by multiplying with 100 . Beta* indicates that the correlations follow a beta-distribution stretched to the interval $[-1,1]$.
Table 3: Variance Decomposition (in \%):

	Pref./Wage Markup			Technology							Policy						
	$\xi^{p r e f}$	ε_{w}^{0}	$\varepsilon_{w}^{4,8}$	ε_{z}^{0}	$\varepsilon_{z}^{4,8}$	ε_{x}^{0}	$\varepsilon_{x}^{4,8}$	$\varepsilon_{z I}^{0}$	ε_{a}^{0}	$\varepsilon_{a}^{4,8}$	ξ^{R}	ε_{g}^{0}	$\varepsilon_{g}^{4,8}$	$\varepsilon_{\tau n}^{0}$	$\varepsilon_{\tau n}^{4,8}$	$\varepsilon_{\tau k}^{0}$	$\varepsilon_{\tau k}^{4,8}$
4 periods																	
GDP	11.6	9.1	1.7	13.7	15.3	28.2	12.7	0.7	0.7	1.0	3.4	0.0	0.2	0.4	0.0	0.3	0.6
Cons.	69.1	0.9	0.5	1.1	2.2	10.1	13.2	0.0	0.9	1.4	0.0	0.0	0.3	0.0	0.0	0.0	0.0
Invest.	2.1	12.2	1.7	18.8	19.2	24.4	7.6	1.3	0.8	3.9	5.8	0.0	0.0	0.6	0.0	0.6	0.9
Hours	1.2	27.4	0.8	8.8	11.2	1.0	9.5	0.2	6.6	12.6	8.7	0.0	0.0	1.6	0.0	9.4	1.0
Infl.	1.0	3.6	0.8	8.1	2.7	2.2	6.0	0.1	4.6	22.3	35.1	0.0	0.0	0.3	0.0	5.0	7.9
Cap. Tax	0.1	0.3	0.0	0.5	0.5	0.2	0.2	0.0	0.0	0.1	0.2	0.0	0.0	0.0	0.0	68.6	0.0
Lab. Tax	0.0	0.4	0.0	0.2	0.1	0.1	0.1	0.0	0.1	0.2	0.1	0.0	0.0	77.0	0.0	0.2	0.0
Gov. Spend.	0.0	0.0	0.0	0.0	0.0	73.0	0.0	0.0	3.9	0.0	0.2	22.7	0.0	0.0	0.0	0.0	0.0
16 periods																	
GDP	6.6	5.8	2.2	8.4	13.1	21.1	19.4	0.5	2.3	3.2	2.1	0.0	13.6	0.3	0.0	0.2	0.9
Cons.	53.0	1.3	0.8	1.5	3.3	15.3	21.2	0.0	1.2	1.7	0.0	0.0	0.4	0.0	0.0	0.0	0.0
Invest.	1.7	9.6	2.9	14.5	20.4	19.8	13.7	1.0	2.5	6.3	4.5	0.0	0.2	0.5	0.0	0.5	1.8
Hours	0.8	37.0	17.8	3.7	7.7	6.3	6.5	0.3	2.1	7.1	2.2	0.0	1.6	1.5	0.0	2.1	3.2
Infl.	0.8	3.1	1.0	6.9	4.8	2.5	6.2	0.6	4.5	22.1	30.4	0.0	0.1	0.2	0.0	4.3	12.3
Cap. Tax	0.4	3.0	1.3	4.3	8.0	4.0	2.7	0.2	0.2	0.4	0.3	0.0	0.1	0.1	0.0	19.9	47.3
Lab. Tax	0.1	9.2	2.8	0.1	0.7	0.3	0.3	0.0	0.6	2.2	0.3	0.0	0.3	71.4	0.8	0.1	0.1
Gov. Spend.	0.0	0.0	0.0	0.0	0.0	1.3	1.5	0.0	0.2	0.1	0.0	0.1	96.7	0.0	0.0	0.0	0.0
Uncond. Variance																	
GDP	6.2	5.8	2.4	8.6	14.3	19.9	18.8	0.5	2.3	4.1	2.0	0.0	13.0	0.2	0.0	0.5	1.1
Cons.	49.9	1.4	0.9	1.7	3.6	16.0	22.4	0.0	1.3	1.9	0.0	0.0	0.4	0.0	0.0	0.0	0.0
Invest.	1.7	9.3	3.5	14.2	22.5	18.4	13.2	0.9	2.2	6.6	3.8	0.0	0.2	0.4	0.0	0.9	2.0
Hours	0.8	22.6	16.3	2.5	5.5	7.1	13.1	0.3	5.5	13.7	1.3	0.0	7.2	1.3	0.0	1.2	1.5
Infl.	1.4	4.3	2.1	8.9	12.4	2.4	5.2	0.7	5.7	23.4	20.7	0.0	0.1	0.4	0.0	3.5	8.4
Cap. Tax	0.6	3.6	2.7	5.1	12.5	6.1	8.6	0.4	2.8	6.1	0.3	0.0	2.1	0.3	0.0	12.8	30.8
Lab. Tax	0.3	11.9	8.3	6.2	14.4	10.2	15.1	0.4	0.4	0.9	1.3	0.0	25.8	2.7	0.0	0.9	0.1
Gov. Spend.	0.0	0.1	0.1	0.0	0.1	1.8	3.0	0.0	0.3	0.6	0.0	0.1	93.9	0.0	0.0	0.0	0.0

Notes: Variance decompositions are performed at the posterior median. ε_{i}^{0} represents contemporaneous shock components; $\varepsilon_{i}^{4,8}$ represents the sum of the 4 and 8 quarter anticipated shock components. For ease of exposition, we have combined the two anticipated shock components into one and left out the anticipated stationary investment-specific shocks that contribute less than 0.01 percent to the variance of the variables. Due to space constraints, we also do not show the shocks' variance contributions to wages and the interest rate.
Table 4: Variance Decomposition, Federal Government Only (in \%):

	Pref./Wage Markup			Technology							Policy						
	$\xi^{p r e f}$	ε_{w}^{0}	$\varepsilon_{w}^{4,8}$	ε_{z}^{0}	$\varepsilon_{z}^{4,8}$	ε_{x}^{0}	$\varepsilon_{x}^{4,8}$	$\varepsilon_{z I}^{0}$	ε_{a}^{0}	$\varepsilon_{a}^{4,8}$	ξ^{R}	ε_{g}^{0}	$\varepsilon_{g}^{4,8}$	$\varepsilon_{\tau n}^{0}$	$\varepsilon_{\tau n}^{4,8}$	$\varepsilon_{\tau k}^{0}$	$\varepsilon_{\tau k}^{4,8}$
4 periods																	
GDP	10.5	0.0	3.4	10.4	7.4	17.8	6.2	0.7	1.4	1.5	7.1	0.0	1.1	7.8	22.5	0.8	0.8
Cons.	47.3	0.0	0.2	2.8	1.8	15.5	12.8	0.4	3.0	5.8	0.2	0.0	0.8	2.0	5.8	0.3	1.0
Invest.	0.6	0.0	5.1	11.3	8.2	5.6	1.2	1.1	7.6	11.1	11.8	0.0	0.7	8.6	24.6	0.9	0.7
Hours	1.1	0.0	3.4	10.4	5.2	3.4	4.7	0.5	10.7	10.0	8.1	0.0	0.6	8.7	17.1	13.0	2.5
Infl.	0.4	0.0	4.5	7.8	4.7	1.4	0.2	0.0	5.7	16.5	7.2	0.0	0.6	4.7	12.6	6.0	27.3
Cap. Tax	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.1	82.3	0.0
Lab. Tax	0.1	0.0	0.2	1.0	0.3	0.4	0.3	0.0	1.0	0.8	0.7	0.0	0.0	49.8	1.1	1.2	0.2
Gov. Spend.	0.0	0.0	0.0	0.0	0.0	97.0	0.0	0.0	0.9	0.0	0.1	1.8	0.0	0.0	0.0	0.0	0.0
16 periods																	
GDP	6.0	0.0	2.6	7.1	5.2	13.2	7.1	0.5	2.0	1.7	5.3	0.0	24.1	5.4	15.8	1.2	2.2
Cons.	41.3	0.0	0.2	2.9	1.9	17.6	15.0	0.5	3.1	6.0	0.2	0.0	0.9	2.2	6.3	0.4	1.1
Invest.	0.5	0.0	5.2	10.7	8.1	5.2	1.6	0.9	6.8	9.6	11.7	0.0	0.7	8.1	23.6	2.3	4.1
Hours	0.5	0.0	10.5	4.2	4.3	2.8	1.7	0.1	3.9	6.8	2.4	0.0	1.9	13.5	37.2	3.8	5.9
Infl.	0.4	0.0	4.4	7.1	4.9	1.2	0.2	0.0	5.9	17.4	6.6	0.0	0.6	4.8	13.3	5.4	27.2
Cap. Tax	0.0	0.0	0.3	0.8	0.7	0.0	0.0	0.0	0.3	0.6	0.1	0.0	0.1	0.7	2.1	25.0	66.0
Lab. Tax	0.1	0.0	11.8	0.7	4.0	0.4	0.3	0.1	6.2	9.6	1.5	0.0	0.3	24.0	26.9	1.2	0.9
Gov. Spend.	0.0	0.0	0.0	0.0	0.0	2.3	2.5	0.0	0.2	0.1	0.0	0.0	94.9	0.0	0.0	0.0	0.0
Uncond. Variance																	
GDP	5.6	0.0	3.9	8.1	6.1	12.5	6.7	0.5	2.4	3.4	5.0	0.0	22.4	6.2	11.0	1.7	3.8
Cons.	41.4	0.0	0.4	3.0	2.0	17.7	15.1	0.5	3.7	7.4	0.2	0.0	1.0	2.3	4.0	0.5	0.4
Invest.	0.6	0.0	7.2	11.6	9.2	5.3	1.7	0.7	6.4	11.3	9.6	0.0	0.7	8.8	15.7	2.8	7.5
Hours	0.4	0.0	12.1	3.5	3.6	4.6	4.2	1.5	6.2	12.5	2.1	0.0	7.4	8.8	15.4	2.7	14.1
Infl.	0.4	0.0	5.9	7.9	5.4	3.2	2.7	0.2	9.5	24.9	7.2	0.0	0.7	5.4	9.2	6.3	10.5
Cap. Tax	0.1	0.0	5.3	1.9	1.5	2.3	2.0	0.1	1.1	3.0	0.3	0.0	0.8	1.6	2.8	22.6	51.6
Lab. Tax	0.2	0.0	7.9	3.4	3.1	2.5	2.5	6.5	15.1	31.8	0.7	0.0	14.2	2.7	3.4	0.4	2.4
Gov. Spend.	0.0	0.0	0.1	0.0	0.0	2.3	2.7	0.0	0.5	0.8	0.0	0.0	93.4	0.0	0.0	0.0	0.0

4 Stationary Equilibrium

In order to derive a state-space representation of the model, the model presented in the main text is solved by using a first-order perturbation method. However, due to the two integrated processes A_{t} and X_{t}, which grow with rates

$$
\begin{equation*}
\mu_{t}^{a}=\frac{A_{t}}{A_{t-1}}, \quad \mu_{t}^{x}=\frac{X_{t}}{X_{t-1}}, \tag{1}
\end{equation*}
$$

the model has to be detrended first in order to induce stationarity and to have a well-defined steady state. Y_{t}, C_{t} and W_{t} inherit the trend $X_{t}^{Y}=A^{\frac{\alpha}{\alpha-1}} X_{t}$, which corresponds to a growth rate of

$$
\begin{equation*}
\mu_{t}^{y}=\left(\mu_{t}^{a}\right)^{\frac{\alpha}{\alpha-1}} \mu_{t}^{x} \tag{2}
\end{equation*}
$$

K_{t} and I_{t} inherit the trend $X_{t}^{K}=A^{\frac{1}{\alpha-1}} X_{t}$ and thus grow with

$$
\begin{equation*}
\mu_{t}^{k}=\mu_{t}^{I}=\left(\mu_{t}^{a}\right)^{\frac{1}{\alpha-1}} \mu_{t}^{x} \tag{3}
\end{equation*}
$$

G_{t} inherits $X_{t}^{G}=\left(X_{t-1}^{G}\right)^{\rho_{x g}}\left(X_{t-1}^{Y}\right)^{1-\rho_{x g}}$ due to the assumed cointegrated trend with output. It hence grows with rate

$$
\begin{equation*}
x_{t}^{g}=\frac{\left(x_{t-1}^{g}\right)^{\rho_{x_{g}}}}{\mu_{t}^{y}} \tag{4}
\end{equation*}
$$

The detrending is performed by dividing the trending model variables by their respective trend. For the estimation of our structural model, these stationary model variables are matched to the data presented in Appendix 6.

5 Observation Equation

The observation equation describes how the empirical times series are matched to the corresponding model variables:

$$
\begin{aligned}
& O B S_{t}=\left[\begin{array}{c}
\Delta \log \left(Y_{t}\right) \\
\Delta \log \left(C_{t}\right) \\
\Delta \log \left(z_{t}^{I} A_{t} I_{t}\right) \\
\log \left(\frac{L_{t}}{L}\right) \\
\Delta \log \left(G_{t}\right) \\
\Delta \log \left(z_{t}^{I} A_{t}\right) \\
\tau_{t}^{k} \\
\tau_{t}^{n} \\
\Delta \log \left(T F P_{t}\right) \\
\Delta \log \left(W_{t}\right) \\
\log \left(\frac{R_{t}}{R}\right) \\
\log \left(\frac{\Pi_{t}}{\Pi}\right)
\end{array}\right] \times 100-\left[\begin{array}{c}
\log \left(\mu^{y}\right) \\
\log \left(\mu^{y}\right) \\
\log \left(\mu^{y}\right) \\
0 \\
\log \left(\mu^{y}\right) \\
\log \left(\mu^{a}\right) \\
0 \\
0 \\
(1-\alpha) \log \left(\mu^{x}\right) \\
\log \left(\mu^{y}\right) \\
0 \\
0
\end{array}\right] \times 100 \\
& {\left[\begin{array}{c}
\hat{y}_{t}-\hat{y}_{t-1}+\log \mu_{t}^{y} \\
\hat{c}_{t}-\hat{c}_{t-1}+\log \mu_{t}^{y} \\
\hat{i}_{t}-\hat{i}_{t-1}+\hat{z}_{t}^{I}-\hat{z}_{t-1}^{I}+\log \mu_{t}^{y} \\
\hat{L}_{t} \\
\hat{g}_{t}-\hat{g}_{t-1}+\hat{x}_{t}^{g}-\hat{x}_{t-1}^{g}+\log \mu_{t}^{y} \\
\hat{\mu}_{t}^{a}+\hat{z}_{t}^{I}-\hat{z}_{t-1}^{I} \\
\tau_{t}^{k} \\
\tau_{t}^{n} \\
\hat{z}_{t}-\hat{z}_{t-1}+(1-\alpha) \log \mu_{t}^{x} \\
\hat{w}_{t}+\hat{w}_{t-1}+\log \mu^{y} \\
\hat{R}_{t} \\
\hat{\Pi}_{t}
\end{array}\right]-\left[\begin{array}{c}
\log \left(\mu^{y}\right) \\
\log \left(\mu^{y}\right) \\
\log \left(\mu^{y}\right) \\
0 \\
\log \left(\mu^{y}\right) \\
\log \left(\mu^{a}\right) \\
0 \\
0 \\
(1-\alpha) \log \left(\mu^{x}\right) \\
\log \left(\mu^{y}\right) \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{y, t}^{m e} \\
0 \\
0 \\
0 \\
0 \\
0 \\
\varepsilon_{\tau k, t}^{m e} \\
\varepsilon_{\tau n, t}^{m e} \\
0 \\
\varepsilon_{w, t}^{m e} \\
0 \\
0
\end{array}\right],}
\end{aligned}
$$

where Δ denotes the temporal difference operator, L denotes the steady state of hours worked, μ^{y} is the steady state growth rate of output ${ }^{3}, \mu^{a}$ is the steady state growth rate of the relative price of investment, $T F P_{t}=z_{t} X_{t}^{1-\alpha}$ is total factor productivity, and R is the steady state

[^2]interest rate. The hats above the variables denote log deviations from steady state. ${ }^{4}$ Due to potential mismeasurement of tax rates and wages, we follow Sargent (1989) and Ireland (2004) allow for measurement error in those variables. Moreover, to avoid stochastic singularity of the model, we allow for measurement error in output.

6 Data construction

Unless otherwise noted, all data are from the Bureau of Economic Analysis (BEA)'s NIPA Tables and available in quarterly frequency from 1955Q1 until 2006Q4.

Capital and labor tax rates. Our approach to calculate average tax rates closely follows Mendoza et al. (1994), Jones (2002), and Leeper et al. (2010). We first compute the average personal income tax rate

$$
\tau^{p}=\frac{I T}{W+P R I / 2+C I},
$$

where $I T$ is personal current tax revenues (Table 3.1 line 3), W is wage and salary accruals (Table 1.12 line 3), $P R I$ is proprietor's income (Table 1.12 line 9), and $C I \equiv P R I / 2+R I+$ $C P+N I$ is capital income. Here, $R I$ is rental income (Table 1.12 line 12), $C P$ is corporate profits (Table 1.12 line 13), and $N I$ denotes the net interest income (Table 1.12 line 18).

The average labor and capital income tax rates can then be computed as

$$
\tau^{n}=\frac{\tau^{p}(W+P R I / 2)+C S I}{E C+P R I / 2}
$$

where CSI denotes contributions for government social insurance (Table 3.1 line 7), and $E C$ is compensation of employees (Table 1.12 line 2), and

$$
\tau^{k}=\frac{\tau^{p} C I+C T+P T}{C I+P T}
$$

[^3]where $C T$ is taxes on corporate income (Table 3.1 line 5), and $P T$ is property taxes (Table 3.3 line 8).

Government spending. Government spending is the sum of government consumption (Table 3.1 line 16) and government investment (Table 3.1 line 35) divided by the GDP deflator (Table 1.1.4 line 1) and the civilian noninstitutional population (BLS, Series LNU00000000Q).

Total factor productivity (TFP). The TFP series is taken from Fernald (2012), who closely follows Basu et al. (2006) and provides a quarterly series that is adjusted for capital and labor utilization.

Relative price of investment. The relative price of investment is taken from SchmittGrohé and Uribe (2011). They base their calculations on Fisher (2006).

Output. Nominal GDP (Table 1.1.5 line 1) divided by the GDP deflator (Table 1.1.4 line 1) and the civilian noninstitutional population (BLS, Series LNU00000000Q).

Investment. Sum of Residential fixed investment (Table 1.1.5 line 12) and nonresidential fixed investment (Table 1.1.5 line 9) divided by the GDP deflator (Table 1.1.4 line 1) and the civilian noninstitutional population (BLS, Series LNU00000000Q).

Consumption. Sum of personal consumption expenditures for nondurable goods (Table 1.1.5 line 5) and services (Table 1.1.5 line 6) divided by the GDP deflator (Table 1.1.4 line 1) and the civilian noninstitutional population (BLS, Series LNU00000000Q).

Real wage. Hourly compensation in the nonfarm business sector (BLS, Series PRS85006103) divided by the GDP deflator (Table 1.1.4 line 1).

Inflation. Computed as the log-difference of the GDP deflator (Table 1.1.4 line 1).
Nominal interest rate. Geometric mean of the effective Federal Funds Rate (St.Louis FED - FRED Database, Series FEDFUNDS).

Hours worked. Nonfarm business hours worked (BLS, Series PRS85006033) divided by the civilian noninstitutional population (BLS, Series LNU00000000Q)

Debt. Gross Federal Debt (St.Louis FED - FRED Database, Series FYGFD).

Figure 3: Evolution of the tax rates and the government spending to GDP ratio.

7 Baseline Model - Different Cholesky Ordering

When ordering the labor tax rate first, the labor tax shock affects the capital tax rate immediately, which now reacts with a relatively big drop that is again larger for the surprise shock. As a result, the total effective shock size increases and the IRFs are quantitatively bigger, but remain qualitatively similar. However, there is one major difference for the surprise labor shock: capital taxes now decrease by almost two percentage points and thus stronger than the labor tax rate. Due to the resulting drop in the rental-rate to wage ratio, firms initially substitute capital services for labor services. Thus, capital and labor services essentially switch roles compared to the IRFs plotted in Figure 4 of the paper, with the former now rising on impact and the latter falling.

Figure 4: Impulse responses to unanticipated and anticipated capital tax shocks.
Notes: solid line: impulse responses to an unanticipated 1 percentage point cut of the capital tax rate τ^{k}; dashed line (short-dashed for after-tax measures): impulse responses to an eight period anticipated 1 percentage point cut of the capital tax rate τ^{k} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are semi-elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Figure 5: Impulse responses to unanticipated and anticipated labor tax shocks.
Notes: solid line: impulse responses to an unanticipated 1 percentage point cut of the labor tax rate τ^{n}; dashed line (short-dashed for after-tax measures): impulse responses to an eight period anticipated 1 percentage point cut of the labor tax rate τ^{n} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are semi-elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Figure 6: Impulse responses to unanticipated and anticipated government spending shocks. Notes: solid line: impulse responses to an unanticipated 1 percent increase in government spending g_{t}; dashed line (short-dashed for after-tax measures): impulse responses to an eight period anticipated 1 percent increase in government spending g_{t} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

8 Baseline Model - Detailed Variance Decomposition

Table 5: Variance Decomposition Output Growth Baseline (in percent)

	1	4	8	12	16	20	Inf
$\xi_{p r e f}^{0}$	25.44	11.57	8.88	6.88	6.59	6.45	6.24
ε_{w}^{0}	8.22	9.13	7.64	5.89	5.76	5.77	5.84
$\varepsilon_{w}^{4,8}$	1.12	1.69	2.40	2.26	2.18	2.19	2.42
ε_{z}^{0}	12.83	13.66	11.11	8.58	8.42	8.46	8.62
$\varepsilon_{z}^{4,8}$	11.53	15.32	16.34	13.51	13.15	13.31	14.31
ε_{x}^{0}	21.95	28.24	27.33	21.92	21.05	20.59	19.91
$\varepsilon_{x}^{4,8}$	8.88	12.73	17.66	18.33	19.39	19.35	18.76
$\varepsilon_{z I}^{0}$	0.16	0.75	0.65	0.50	0.49	0.48	0.48
$\varepsilon_{z I}^{4,8}$	0.00	0.00	0.01	0.01	0.01	0.01	0.01
ε_{a}^{0}	0.10	0.75	1.99	2.17	2.30	2.32	2.26
$\varepsilon_{a}^{4,8}$	1.65	1.02	1.33	2.09	3.25	3.86	4.11
ξ^{R}	6.96	3.44	2.72	2.17	2.09	2.04	1.97
ε_{q}^{0}	0.04	0.02	0.01	0.01	0.01	0.01	0.01
$\varepsilon_{g}^{4,8}$	0.09	0.16	0.25	14.18	13.64	13.38	13.02
$\varepsilon_{\tau n}^{0}$	0.40	0.42	0.34	0.27	0.27	0.28	0.25
$\varepsilon_{\tau n}^{4,8}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau k}^{0}$	0.21	0.34	0.26	0.23	0.24	0.25	0.50
$\varepsilon_{\tau k}^{4,8}$	0.14	0.55	0.84	0.79	0.91	1.04	1.07
$\varepsilon_{w, t}^{m e}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau n}^{m e, t}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau, t}^{m e}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{y, t}^{m e}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00

9 Comparing Models

The following section traces out some of the differences between the Schmitt-Grohé and Uribe (2012) (SGU) model and the model used in the paper. For this purpose, we estimated a basic RBC version that is very close to the original SGU model and an intermediate RBC version that is already closer to our specification.

9.1 Basic RBC

The basic RBC version differs from the baseline model in that we eliminated the nominal block and estimated a real version of our model on the same data as Schmitt-Grohé and Uribe (2012), except for using the Fernald (2012) TFP-series, which also corrects for labor utilization, instead of the Beaudry and Lucke (2010) series used in SGU that only corrects for capital utilization. Moreover, we added the two tax rate series as observables. In contrast to the baseline model and following SGU, we also allow for anticipation in the preference shocks.

As Table 6 shows, this basic version of the model fits the data already quite well. Its greatest weaknesses are that it significantly overpredicts i) the comovement of output and TFP growth rates (a weakness it shares with the SGU model), ii) the autocorrelation of government spending, and iii) the autocorrelation of TFP. At the same time it underpredicts the autocorrelation of investment-specific technology growth. Looking specifically at the fiscal variables, we see that the model is able to match the moments of labor and capital taxes and government spending well. The only disadvantage compared to the SGU model is that the autocorrelation of government spending in the basic RBC version is a bit too high.

Figure 7: Impulse responses to unanticipated and anticipated capital tax shocks.
Notes: solid line: impulse responses to an unanticipated 1 percentage point cut of the capital tax rate τ^{k}; dashed line: impulse responses to an eight period anticipated 1 percentage point cut of the capital tax rate τ^{k} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are semi-elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Figure 8: Impulse responses to unanticipated and anticipated labor tax shocks.
Notes: solid line: impulse responses to an unanticipated 1 percentage point cut of the labor tax rate τ^{n}; dashed line: impulse responses to an eight period anticipated 1 percentage point cut of the labor tax rate τ^{n} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are semi-elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Figure 9: Impulse responses to unanticipated and anticipated government spending shocks. Notes: solid line: impulse responses to an unanticipated 1 percent increase in government spending g_{t}; dashed line: impulse responses to an eight period anticipated 1 percent increase in government spending g_{t} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Table 6: Model and Data Moments

	Model	Data	Model	Data	Model	Data
	$\rho\left(x_{t}, y_{t}\right)$		$\sigma\left(x_{t}\right)$		$\rho\left(x_{t}, x_{t-1}\right)$	
$\Delta \log \left(Y_{t}\right)$	1.000	1.000	0.942	0.907	0.798	0.276
$\Delta \log \left(C_{t}\right)$	0.618	0.507	0.579	0.504	0.582	0.221
$\Delta \log \left(z_{t}^{I} A_{t} I_{t}\right)$	0.829	0.691	3.577	2.272	0.806	0.527
$\log \left(\frac{L_{t}}{L}\right)$	0.083	0.053	5.972	4.015	0.988	0.978
$\Delta \log \left(G_{t}\right)$	0.497	0.252	1.413	1.125	0.392	0.061
$\Delta \log \left(z_{t}^{I} A_{t}\right)$	0.030	-0.036	1.234	0.408	-0.001	0.493
τ^{n}	-0.030	-0.058	4.634	3.641	0.995	0.991
τ^{k}	0.090	-0.132	3.379	3.173	0.972	0.968
$\Delta \log \left(T F P_{t}\right)$	0.571	0.075	1.089	0.848	0.334	-0.075

Notes: Time Series x_{t} are the growth rates of output ($\Delta \log \left(Y_{t}\right)$, denoted by y_{t} in the first column), consumption $\left(\Delta \log \left(C_{t}\right)\right)$, investment $\left(\Delta \log \left(z_{t}^{I} A_{t} I_{t}\right)\right)$, percentage deviations of hours worked from steady state $\left(\log \left(\frac{L_{t}}{L}\right)\right)$, the growth rates of government spending $\left(\Delta \log \left(G_{t}\right)\right)$ and investment-specific technology $\left(\Delta \log \left(z_{t}^{I} A_{t}\right)\right)$, the level of labor and capital taxes $\left(\tau_{t}^{n}\right.$ and $\left.\tau_{t}^{k}\right)$, the growth rates of wages $\left(\Delta \log \left(W_{t}\right)\right)$ and TFP $\left(\Delta \log \left(T F P_{t}\right)\right)$, the level of the net nominal interest rate $\left(\log \left(R_{t}\right)\right.$), and the level of net inflation $\left(\log \left(\Pi_{t}\right)\right)$. Model moments are computed at the posterior median of the parameters.

Table 7: Prior and Posterior Distributions of the Shock Processes

Parameter	Prior distribution			Posterior distribution			
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent
Preference and Technology Parameters							
σ_{l}	Gamma	2.00	0.75	6.085	0.408	5.408	6.742
σ_{s}	Beta	0.50	0.20	0.003	0.000	0.002	0.004
κ	Gamma	4.00	1.50	9.583	0.508	8.807	10.493
δ_{2} / δ_{1}	Inverse-Gamma	0.50	0.15	0.280	0.021	0.246	0.315
ϕ_{c}	Beta	0.70	0.10	0.978	0.003	0.972	0.982
Preference Shock							
$\rho_{\text {pref }}$	Beta	0.50	0.20	0.160	0.034	0.105	0.219
$\sigma_{\text {pref }}$	Inverse-Gamma	0.10	2.00	0.032	0.014	0.023	0.054
$\sigma_{\text {pref }}^{4}$	Inverse-Gamma	0.10	2.00	36.256	4.549	28.434	43.391
$\sigma_{\text {pref }}^{8}$	Inverse-Gamma	0.10	2.00	0.034	0.029	0.024	0.065
Wage Markup Shock							
ρ_{w}	Beta	0.50	0.20	0.961	0.007	0.949	0.971
σ_{w}	Inverse-Gamma	0.10	2.00	51.134	3.774	44.752	57.465
σ_{w}^{4}	Inverse-Gamma	0.10	2.00	0.036	0.024	0.023	0.071
σ_{w}^{8}	Inverse-Gamma	0.10	2.00	54.250	3.857	48.253	60.806
Stationary Technology Shock							
ρ_{z}	Beta	0.50	0.20	0.947	0.017	0.916	0.970
σ_{z}	Inverse-Gamma	0.10	2.00	0.032	0.014	0.024	0.056
σ_{z}^{4}	Inverse-Gamma	0.10	2.00	0.745	0.026	0.700	0.786
σ_{z}^{8}	Inverse-Gamma	0.10	2.00	0.041	0.049	0.024	0.085
Non-Stationary Technology Shock							
ρ_{x}	Beta	0.50	0.20	0.669	0.023	0.629	0.705
σ_{x}	Inverse-Gamma	0.10	2.00	0.688	0.035	0.630	0.746
σ_{x}^{4}	Inverse-Gamma	0.10	2.00	0.035	0.021	0.024	0.073
σ_{x}^{8}	Inverse-Gamma	0.10	2.00	0.517	0.041	0.449	0.587
Stationary Investment-Specific Productivity Shock							
$\rho_{z I}$	Beta	0.50	0.20	0.989	0.003	0.985	0.993
$\sigma_{z I}$	Inverse-Gamma	0.10	2.00	0.666	0.033	0.611	0.718
$\sigma_{z I}^{4}$	Inverse-Gamma	0.10	2.00	0.535	0.059	0.391	0.604

Table 7: Prior and Posterior Distributions of the Shock Processes - Continued

Parameter	Prior distribution			Posterior distribution			
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent
$\sigma_{z I}^{8}$	Inverse-Gamma	0.10	2.00	0.093	0.131	0.025	0.431
Non-Stationary Investment-Specific Productivity Shock							
ρ_{a}	Beta	0.50	0.20	0.004	0.003	0.001	0.009
σ_{a}	Inverse-Gamma	0.10	2.00	0.591	0.031	0.537	0.643
σ_{a}^{4}	Inverse-Gamma	0.10	2.00	0.044	0.048	0.024	0.145
σ_{a}^{8}	Inverse-Gamma	0.10	2.00	0.649	0.030	0.596	0.696
Government Spending Shock							
ρ_{g}	Beta	0.50	0.20	0.966	0.006	0.955	0.974
$\rho_{x g}$	Beta	0.50	0.20	0.870	0.020	0.836	0.902
σ_{g}	Inverse-Gamma	0.10	2.00	1.078	0.038	1.014	1.140
σ_{g}^{4}	Inverse-Gamma	0.10	2.00	0.033	0.018	0.025	0.059
σ_{g}^{8}	Inverse-Gamma	0.10	2.00	0.035	0.019	0.025	0.073
$\phi_{g D}$	Normal	0.00	1.00	-0.010	0.002	-0.013	-0.007
Labor Tax Shock							
$\rho_{\tau n}$	Beta	0.70	0.20	0.991	0.003	0.985	0.997
$\sigma_{\tau n}$	Inverse-Gamma	0.10	2.00	0.387	0.029	0.341	0.433
$\sigma_{\tau n}^{4}$	Inverse-Gamma	0.10	2.00	0.042	0.038	0.024	0.104
$\sigma_{\tau n}^{8}$	Inverse-Gamma	0.10	2.00	0.037	0.025	0.023	0.083
$\phi_{n D}$	Normal	0.00	1.00	0.000	0.000	0.000	0.001
$\phi_{n l}$	Normal	0.00	1.00	0.017	0.003	0.010	0.022
Capital Tax Shock							
$\rho_{\tau k}$	Beta	0.70	0.20	0.917	0.011	0.897	0.935
$\sigma_{\tau k}$	Inverse-Gamma	0.10	2.00	0.745	0.037	0.686	0.807
$\sigma_{\tau k}^{4}$	Inverse-Gamma	0.10	2.00	0.033	0.015	0.025	0.056
$\sigma_{\tau k}^{8}$	Inverse-Gamma	0.10	2.00	0.037	0.021	0.025	0.078
$\phi_{k D}$	Normal	0.00	1.00	-0.000	0.000	-0.001	0.000
$\phi_{k I}$	Normal	0.00	1.00	0.008	0.001	0.006	0.010
Tax Shock Correlations							
$\left\{\varepsilon_{\tau k}^{0}, \varepsilon_{\tau n}^{0}\right\}$	Beta*	0.00	0.30	0.597	0.046	0.526	0.673
$\left\{\varepsilon_{\tau k}^{4}, \varepsilon_{\tau n}^{4}\right\}$	Beta*	0.00	0.30	0.013	0.231	-0.383	0.390

Table 7: Prior and Posterior Distributions of the Shock Processes - Continued

Parameter	Prior distribution			Posterior distribution			
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent
$\left\{\varepsilon_{\tau k}^{8}, \varepsilon_{\tau n}^{8}\right\}$	Beta* *	0.00	0.30	0.000	0.230	-0.380	0.379
Measurement Error							
$\sigma_{y}^{m e}$	Uniform	0.01	0.01	0.018	0.000	0.018	0.018
$\sigma_{\tau n}^{m e}$	Uniform	0.46	0.26	0.177	0.022	0.141	0.210
$\sigma_{\tau k}^{m e}$	Uniform	0.40	0.23	0.138	0.071	0.000	0.239

Notes: The standard deviations of the shocks and measurement errors have been transformed into percentages by multiplying with 100. Beta* indicates that the correlations follow a beta-distribution stretched to the interval $[-1,1]$.

Table 8: Variance Decomposition Output Growth RBC (in percent)

	1	4	8	12	16	20	Inf
$\xi_{p r e f}^{0}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\xi_{p r e f}^{4,8}$	0.11	0.20	2.90	2.48	2.36	2.32	2.28
ε_{w}^{0}	9.00	6.36	4.70	3.95	3.77	3.76	3.86
$\varepsilon_{w}^{4,8}$	0.25	0.43	1.50	3.03	2.94	2.92	3.27
ε_{z}^{0}	0.05	0.03	0.03	0.02	0.02	0.02	0.02
$\varepsilon_{z}^{4,8}$	3.40	6.16	7.81	6.67	6.38	6.42	6.69
ε_{x}^{0}	62.13	73.66	69.42	62.13	59.53	58.80	57.94
$\varepsilon_{x, 8}^{4,8}$	0.96	1.49	4.47	12.60	16.25	17.07	17.12
$\varepsilon_{z,}^{0}$	1.57	1.19	0.91	0.77	0.73	0.72	0.73
$\varepsilon_{z I}^{4,8}$	0.10	0.15	0.27	0.33	0.32	0.32	0.33
ε_{a}^{0}	1.39	2.05	1.72	1.49	1.42	1.40	1.38
$\varepsilon_{a}^{4,8}$	0.09	0.14	0.45	1.54	1.57	1.56	1.54
ε_{g}^{0}	18.99	6.96	4.87	4.11	3.89	3.83	3.78
$\varepsilon_{g}^{4,8}$	0.00	0.00	0.04	0.05	0.05	0.05	0.05
$\varepsilon_{\tau n}^{0}$	0.14	0.10	0.08	0.07	0.06	0.06	0.51
$\varepsilon_{\tau n}^{4,8}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau k}^{0}$	1.50	0.94	0.66	0.56	0.56	0.56	0.36
$\varepsilon_{\tau k}^{4,8}$	0.00	0.00	0.01	0.01	0.01	0.01	0.01
$\varepsilon_{\tau n, t}^{m e}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau k e}^{m, t}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{y, t}^{m e}$	0.20	0.07	0.05	0.04	0.04	0.04	0.03

9.2 Intermediate RBC

The Intermediate RBC model moves a further step to our own baseline specification by omitting anticipated preference shocks, which only have a weak structural interpretation, and adding wages as an observable (including measurement error). This hardly changes the model fit (see Table 9). Most importantly, the autocorrelations of government spending and TFP move closer to the data. As a comparison of Tables 710 shows, the model estimation now assigns a higher standard deviation to temporary TFP instead of permanent TFP shocks and estimates both a lower debt feedback to government spending and a smoother cointegration relationship with output. Associated with these changes in the deep parameters is an increase in the importance of the anticipated government spending shock and a shift of importance from the permanent TFP shock to the temporary one (see Tables 8 and 11). Moreover, the importance of the preference shock increases. Adding wages as an observable shows that
the model has problems fitting the observed behavior of wage growth, but hardly affects the conclusions regarding the importance of wage markup shocks.

Figure 10: Impulse responses to unanticipated and anticipated capital tax shocks.
Notes: solid line: impulse responses to an unanticipated 1 percentage point cut of the capital tax rate τ^{k}; dashed line: impulse responses to an eight period anticipated 1 percentage point cut of the capital tax rate τ^{k} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are semi-elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Figure 11: Impulse responses to unanticipated and anticipated labor tax shocks.
Notes: solid line: impulse responses to an unanticipated 1 percentage point cut of the labor tax rate τ^{n}; dashed line: impulse responses to an eight period anticipated 1 percentage point cut of the labor tax rate τ^{n} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are semi-elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Figure 12: Impulse responses to unanticipated and anticipated government spending shocks. Notes: solid line: impulse responses to an unanticipated 1 percent increase in government spending g_{t}; dashed line: impulse responses to an eight period anticipated 1 percent increase in government spending g_{t} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Table 9: Model and Data Moments

	Model	Data	Model	Data	Model	Data
	$\rho\left(x_{t}, y_{t}\right)$		$\sigma\left(x_{t}\right)$		$\rho\left(x_{t}, x_{t-1}\right)$	
$\Delta \log \left(Y_{t}\right)$	1.000	1.000	0.783	0.907	0.752	0.276
$\Delta \log \left(C_{t}\right)$	0.538	0.507	0.511	0.504	0.488	0.221
$\Delta \log \left(z_{t}^{I} A_{t} I_{t}\right)$	0.808	0.691	3.244	2.272	0.779	0.527
$\log \left(\frac{L_{t}}{L}\right)$	0.036	0.053	6.368	4.015	0.994	0.978
$\Delta \log \left(G_{t}\right)$	0.382	0.252	1.257	1.125	0.276	0.061
$\Delta \log \left(z_{t}^{I} A_{t}\right)$	0.027	-0.036	1.217	0.408	-0.000	0.493
τ^{n}	-0.014	-0.058	4.061	3.641	0.993	0.991
τ^{k}	0.080	-0.132	3.372	3.173	0.972	0.968
$\Delta \log \left(W_{t}\right)$	0.667	-0.043	0.939	0.573	0.402	0.087
$\Delta \log \left(T F P_{t}\right)$	0.524	0.075	1.045	0.848	0.235	-0.075

Notes: Time Series x_{t} are the growth rates of output ($\Delta \log \left(Y_{t}\right)$, denoted by y_{t} in the first column), consumption $\left(\Delta \log \left(C_{t}\right)\right)$, investment $\left(\Delta \log \left(z_{t}^{I} A_{t} I_{t}\right)\right)$, percentage deviations of hours worked from steady state $\left(\log \left(\frac{L_{t}}{L}\right)\right)$, the growth rates of government spending $\left(\Delta \log \left(G_{t}\right)\right)$ and investment-specific technology $\left(\Delta \log \left(z_{t}^{I} A_{t}\right)\right)$, the level of labor and capital taxes $\left(\tau_{t}^{n}\right.$ and $\left.\tau_{t}^{k}\right)$, the growth rates of wages $\left(\Delta \log \left(W_{t}\right)\right)$ and TFP $\left(\Delta \log \left(T F P_{t}\right)\right)$, the level of the net nominal interest rate $\left(\log \left(R_{t}\right)\right)$, and the level of net inflation $\left(\log \left(\Pi_{t}\right)\right)$. Model moments are computed at the posterior median of the parameters.

Table 10: Prior and Posterior Distributions of the Shock Processes

Parameter	Prior distribution			Posterior distribution			
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent
Preference and Technology Parameters							
σ_{l}	Gamma	2.00	0.75	7.354	0.475	6.558	8.082
σ_{s}	Beta	0.50	0.20	0.001	0.000	0.001	0.001
κ	Gamma	4.00	1.50	8.440	0.421	7.772	9.152
δ_{2} / δ_{1}	Inverse-Gamma	0.50	0.15	0.237	0.019	0.207	0.269
ϕ_{c}	Beta	0.70	0.10	0.982	0.003	0.978	0.986
Preference Shock							
$\rho_{\text {pref }}$	Beta	0.50	0.20	0.146	0.027	0.102	0.192
$\sigma_{\text {pref }}$	Inverse-Gamma	0.10	2.00	42.497	6.045	33.734	52.208
Wage Markup Shock							
ρ_{w}	Beta	0.50	0.20	0.972	0.005	0.963	0.980
σ_{w}	Inverse-Gamma	0.10	2.00	47.002	3.298	41.600	52.573
σ_{w}^{4}	Inverse-Gamma	0.10	2.00	41.649	2.816	37.022	46.308
σ_{w}^{8}	Inverse-Gamma	0.10	2.00	0.035	0.025	0.024	0.071
Stationary Technology Shock							
ρ_{z}	Beta	0.50	0.20	0.916	0.036	0.843	0.957
σ_{z}	Inverse-Gamma	0.10	2.00	0.035	0.022	0.025	0.062
σ_{z}^{4}	Inverse-Gamma	0.10	2.00	0.748	0.026	0.707	0.787
σ_{z}^{8}	Inverse-Gamma	0.10	2.00	0.045	0.056	0.025	0.114
Non-Stationary Technology Shock							
ρ_{x}	Beta	0.50	0.20	0.548	0.030	0.498	0.598
σ_{x}	Inverse-Gamma	0.10	2.00	0.701	0.034	0.648	0.758
σ_{x}^{4}	Inverse-Gamma	0.10	2.00	0.032	0.012	0.024	0.052
σ_{x}^{8}	Inverse-Gamma	0.10	2.00	0.538	0.040	0.474	0.606
Stationary Investment-Specific Productivity Shock							
$\rho_{z I}$	Beta	0.50	0.20	0.989	0.002	0.985	0.993
$\sigma_{z I}$	Inverse-Gamma	0.10	2.00	0.646	0.028	0.601	0.689
$\sigma_{z I}^{4}$	Inverse-Gamma	0.10	2.00	0.501	0.097	0.310	0.614
$\sigma_{z I}^{8}$	Inverse-Gamma	0.10	2.00	0.206	0.188	0.025	0.484

Non-Stationary Investment-Specific Productivity Shock

Table 10: Prior and Posterior Distributions of the Shock Processes - Continued

Parameter	Prior distribution			Posterior distribution			
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent
ρ_{a}	Beta	0.50	0.20	0.005	0.003	0.001	0.010
σ_{a}	Inverse-Gamma	0.10	2.00	0.594	0.024	0.553	0.635
σ_{a}^{4}	Inverse-Gamma	0.10	2.00	0.038	0.029	0.023	0.076
σ_{a}^{8}	Inverse-Gamma	0.10	2.00	0.646	0.023	0.607	0.681
Government Spending Shock							
ρ_{g}	Beta	0.50	0.20	0.972	0.003	0.967	0.978
$\rho_{x g}$	Beta	0.50	0.20	0.937	0.013	0.915	0.958
σ_{g}	Inverse-Gamma	0.10	2.00	0.927	0.319	0.027	1.129
σ_{g}^{4}	Inverse-Gamma	0.10	2.00	0.228	0.367	0.024	1.072
σ_{g}^{8}	Inverse-Gamma	0.10	2.00	0.036	0.023	0.025	0.074
$\phi_{g D}$	Normal	0.00	1.00	-0.007	0.002	-0.011	-0.006
Labor Tax Shock							
$\rho_{\tau n}$	Beta	0.70	0.20	0.985	0.004	0.977	0.990
$\sigma_{\tau n}$	Inverse-Gamma	0.10	2.00	0.391	0.032	0.343	0.442
$\sigma_{\tau n}^{4}$	Inverse-Gamma	0.10	2.00	0.041	0.033	0.025	0.084
$\sigma_{\tau n}^{8}$	Inverse-Gamma	0.10	2.00	0.040	0.031	0.024	0.087
$\phi_{n D}$	Normal	0.00	1.00	0.001	0.000	0.000	0.001
$\phi_{n l}$	Normal	0.00	1.00	0.014	0.004	0.007	0.021
Capital Tax Shock							
$\rho_{\tau k}$	Beta	0.70	0.20	0.918	0.010	0.901	0.933
$\sigma_{\tau k}$	Inverse-Gamma	0.10	2.00	0.704	0.036	0.645	0.768
$\sigma_{\tau k}^{4}$	Inverse-Gamma	0.10	2.00	0.035	0.017	0.025	0.068
$\sigma_{\tau k}^{8}$	Inverse-Gamma	0.10	2.00	0.035	0.018	0.024	0.070
$\phi_{k D}$	Normal	0.00	1.00	-0.000	0.000	-0.001	-0.000
$\phi_{k I}$	Normal	0.00	1.00	0.009	0.001	0.007	0.011
Tax Shock Correlations							
$\left\{\varepsilon_{\tau k}^{0}, \varepsilon_{\tau n}^{0}\right\}$	Beta*	0.00	0.30	0.571	0.047	0.498	0.648
$\left\{\varepsilon_{\tau k}^{4}, \varepsilon_{\tau n}^{4}\right\}$	Beta*	0.00	0.30	0.013	0.233	-0.377	0.404
$\left\{\varepsilon_{\tau k}^{8}, \varepsilon_{\tau n}^{8}\right\}$	Beta*	0.00	0.30	0.010	0.233	-0.375	0.394
Measurement Error							

Table 10: Prior and Posterior Distributions of the Shock Processes - Continued

Parameter	Prior distribution			Posterior distribution			
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent
$\sigma_{w}^{m e}$	Uniform	0.07	0.04	0.142	0.000	0.142	0.142
$\sigma_{y}^{m e}$	Uniform	0.01	0.01	0.018	0.000	0.018	0.018
$\sigma_{\tau n}^{m e}$	Uniform	0.46	0.26	0.173	0.025	0.129	0.212
$\sigma_{\tau k}^{m e}$	Uniform	0.40	0.23	0.236	0.045	0.164	0.308

Notes: The standard deviations of the shocks and measurement errors have been transformed into percentages by multiplying with 100. Beta* indicates that the correlations follow a beta-distribution stretched to the interval [-1,1].

Table 11: Variance Decomposition Output Growth RBC intermed. (in percent)

	1	4	8	12	16	20	Inf
$\xi_{p r e f}^{0}$	31.08	15.06	11.75	10.32	9.98	9.89	9.73
ε_{w}^{0}	7.00	6.60	5.33	4.66	4.52	4.50	4.61
$\varepsilon_{w}^{4,8}$	0.47	1.18	2.02	1.82	1.75	1.75	1.86
ε_{z}^{0}	0.04	0.03	0.02	0.02	0.02	0.02	0.02
$\varepsilon_{z}^{4,8}$	2.74	6.87	9.39	8.25	8.26	8.51	8.80
ε_{x}^{0}	42.14	57.03	53.59	48.44	46.98	46.59	46.07
$\varepsilon_{x}^{4,8}$	0.64	1.35	4.91	13.19	15.52	15.91	15.91
$\varepsilon_{z,}^{0}$	1.69	1.64	1.35	1.18	1.14	1.13	1.15
$\varepsilon_{z, 8}^{4,8}$	0.21	0.43	0.62	0.56	0.54	0.54	0.56
ε_{a}^{0}	0.85	2.28	2.10	1.89	1.83	1.81	1.78
$\varepsilon_{a}^{4,8}$	0.11	0.22	0.74	2.25	2.31	2.31	2.28
ε_{g}^{0}	10.38	5.09	3.90	3.42	3.30	3.27	3.23
$\varepsilon_{g}^{4,8}$	0.06	0.14	2.77	2.45	2.36	2.34	2.31
$\varepsilon_{\tau n}^{0}$	0.09	0.09	0.07	0.06	0.06	0.06	0.70
$\varepsilon_{\tau n}^{4,8}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau,}^{0}$	1.73	1.40	1.06	0.96	0.96	0.97	0.64
$\varepsilon_{\tau k}^{4,8}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{w, t}^{m e}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau n, t}^{m, t}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau k e}^{m e t}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{y, t}^{m e}$	0.18	0.08	0.06	0.05	0.05	0.05	0.05

9.3 Baseline model

The next step performed in the paper is to add back the nominal sector. Adding interest rates and inflation as observables helps bringing the model closer to the data in some key aspects (see Table 3 of the paper). The correlation of TFP with output drops by 0.2 compared to the basic model, but is still somewhat too high. Moreover, the autocorrelations of government spending and investment-specific technology growth are roughly on target, while they were too high and too low, respectively, in the real models. The autocorrelation of TFP also moves closer to the data.

This change in the autocorrelation of TFP growth rates is achieved in the model estimation by further shifting importance from the permanent to the temporary TFP shock (see Tables 2 and 4 of the paper). The increase in autocorrelation of investment-specific technology growth stems from a shift of variance from temporary to permanent shocks and a large increase in
the autocorrelation of the latter. This increase in persistence alone would imply a higher autocorrelation of investment growth. Thus, to keep the moments of investment in line with the data, the model assigns lower values to the investment adjustment and capital utilization costs. The further decrease in the contemporaneous autocorrelation of government spending growth rates is achieved by a lower degree of debt feedback and a shift in the importance of surprise to anticipated government spending shocks. Finally, given the implied changes for capital services variability resulting from lower capital adjustment and utilization costs, the Frisch elasticity of labor supply is estimated to increase considerably, thus lowering the autocorrelation of hours, which was extremely high before at 0.993 in the intermediate RBC model.

At the same time, given the estimated moderate degree of nominal rigidities, the nominal model is able to match the moments of the policy rate and inflation well without impairing the fit of the other variables too much. The covariance of wages with output growth decreases a bit with the introduction of wage rigidities and the higher Frisch elasticity, but is still too high. The only drawback is the drop in the autocorrelation of the capital tax rate.

Thus, given the better fit of some key moments of the data, we ultimately believe that the monetary model used as our benchmark model delivers a more realistic picture.

10 NK Federal

This section presents additional IRFs and tables for the federal government only model of section 4.3.

Figure 13: Impulse responses to unanticipated and anticipated capital tax shocks.
Notes: solid line: impulse responses to an unanticipated 1 percentage point cut of the capital tax rate τ^{k}; dashed line: impulse responses to an eight period anticipated 1 percentage point cut of the capital tax rate τ^{k} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are semi-elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Figure 14: Impulse responses to unanticipated and anticipated labor tax shocks.
Notes: solid line: impulse responses to an unanticipated 1 percentage point cut of the labor tax rate τ^{n}; dashed line: impulse responses to an eight period anticipated 1 percentage point cut of the labor tax rate τ^{n} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are semi-elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Figure 15: Impulse responses to unanticipated and anticipated government spending shocks. Notes: solid line: impulse responses to an unanticipated 1 percent increase in government spending g_{t}; dashed line: impulse responses to an eight period anticipated 1 percent increase in government spending g_{t} that becomes known at $t=-8$ and effective at $t=0$. All impulse responses are elasticities and measured in percentage deviations from steady state, with the exception of inflation and the rental rate, which are measured as percentage point deviations from steady state.

Table 12: Model and Data Moments

	Model	Data	Model	Data	Model	Data
	$\rho\left(x_{t}, y_{t}\right)$		$\sigma\left(x_{t}\right)$		$\rho\left(x_{t}, x_{t-1}\right)$	
$\Delta \log \left(Y_{t}\right)$	1.000	1.000	1.007	0.907	0.616	0.276
$\Delta \log \left(C_{t}\right)$	0.566	0.507	0.604	0.504	0.513	0.221
$\Delta \log \left(z_{t}^{I} A_{t} I_{t}\right)$	0.777	0.691	3.508	2.272	0.861	0.527
$\log \left(\frac{L_{t}}{L}\right)$	0.115	0.053	5.405	4.015	0.955	0.978
$\Delta \log \left(G_{t}\right)$	0.535	0.184	2.517	2.051	0.046	-0.044
$\Delta \log \left(z_{t}^{I} A_{t}\right)$	-0.102	-0.036	0.598	0.408	0.611	0.493
τ^{n}	-0.094	-0.062	3.687	2.982	0.987	0.987
τ^{k}	-0.009	-0.119	4.766	3.833	0.874	0.972
$\Delta \log \left(W_{t}\right)$	0.303	-0.043	0.703	0.573	0.290	0.087
$\Delta \log \left(T F P_{t}\right)$	0.221	0.075	1.021	0.848	0.172	-0.075
$\log \left(R_{t}\right)$	-0.231	-0.183	1.310	0.809	0.967	0.959
$\log \left(\Pi_{t}\right)$	-0.259	-0.263	0.703	0.578	0.891	0.854

Notes: Time Series x_{t} are the growth rates of output ($\Delta \log \left(Y_{t}\right)$, denoted by y_{t} in the first column), consumption $\left(\Delta \log \left(C_{t}\right)\right)$, investment $\left(\Delta \log \left(z_{t}^{I} A_{t} I_{t}\right)\right)$, percentage deviations of hours worked from steady state $\left(\log \left(\frac{L_{t}}{L}\right)\right)$, the growth rates of government spending $\left(\Delta \log \left(G_{t}\right)\right)$ and investment-specific technology $\left(\Delta \log \left(z_{t}^{I} A_{t}\right)\right)$, the level of labor and capital taxes $\left(\tau_{t}^{n}\right.$ and $\left.\tau_{t}^{k}\right)$, the growth rates of wages $\left(\Delta \log \left(W_{t}\right)\right)$ and TFP $\left(\Delta \log \left(T F P_{t}\right)\right)$, the level of the net nominal interest rate $\left(\log \left(R_{t}\right)\right.$), and the level of net inflation $\left(\log \left(\Pi_{t}\right)\right)$. Model moments are computed at the posterior median of the parameters.

Table 13: Prior and Posterior Distributions of the Shock Processes

Parameter	Prior distribution			Posterior distribution			
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent
Preference and Technology Parameters							
χ_{w}	Beta	0.50	0.20	0.661	0.106	0.482	0.824
χ_{p}	Beta	0.50	0.20	0.004	0.002	0.001	0.008
θ_{p}	Beta	0.50	0.20	0.881	0.001	0.879	0.884
θ_{w}	Beta	0.50	0.20	0.486	0.019	0.456	0.517
σ_{l}	Gamma	2.00	0.75	2.598	0.205	2.290	2.961
σ_{s}	Beta	0.50	0.20	0.020	0.003	0.016	0.025
κ	Gamma	4.00	1.50	3.901	0.182	3.621	4.214
δ_{2} / δ_{1}	Inverse-Gamma	0.50	0.15	0.090	0.004	0.085	0.097
ϕ_{c}	Beta	0.70	0.10	0.864	0.009	0.848	0.878
Preference Shock							
$\rho_{\text {pref }}$	Beta	0.50	0.20	0.106	0.047	0.038	0.192
$\sigma_{\text {pref }}$	Inverse-Gamma	0.10	2.00	5.488	0.463	4.695	6.257
Wage Markup Shock							
ρ_{w}	Beta	0.50	0.20	0.988	0.001	0.985	0.990
σ_{w}	Inverse-Gamma	0.10	2.00	0.031	0.014	0.023	0.052
σ_{w}^{4}	Inverse-Gamma	0.10	2.00	7.786	0.617	6.779	8.805
σ_{w}^{8}	Inverse-Gamma	0.10	2.00	0.031	0.017	0.025	0.053
Stationary Technology Shock							
ρ_{z}	Beta	0.50	0.20	0.908	0.006	0.899	0.918
σ_{z}	Inverse-Gamma	0.10	2.00	0.553	0.034	0.496	0.608
σ_{z}^{4}	Inverse-Gamma	0.10	2.00	0.128	0.118	0.025	0.332
σ_{z}^{8}	Inverse-Gamma	0.10	2.00	0.502	0.033	0.448	0.556
Non-Stationary Technology Shock							
ρ_{x}	Beta	0.50	0.20	0.455	0.031	0.402	0.506
σ_{x}	Inverse-Gamma	0.10	2.00	0.588	0.041	0.522	0.657
σ_{x}^{4}	Inverse-Gamma	0.10	2.00	0.591	0.066	0.481	0.691
σ_{x}^{8}	Inverse-Gamma	0.10	2.00	0.245	0.167	0.025	0.458
Stationary Investment-Specific Productivity Shock							
$\rho_{z I}$	Beta	0.50	0.20	0.998	0.000	0.998	0.998

Table 13: Prior and Posterior Distributions of the Shock Processes - Continued

Parameter	Prior distribution			Posterior distribution			
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent
$\sigma_{z I}$	Inverse-Gamma	0.10	2.00	0.354	0.025	0.305	0.389
$\sigma_{z I}^{4}$	Inverse-Gamma	0.10	2.00	0.083	0.076	0.024	0.230
$\sigma_{z I}^{8}$	Inverse-Gamma	0.10	2.00	0.031	0.011	0.023	0.053
Non-Stationary Investment-Specific Productivity Shock							
ρ_{a}	Beta	0.50	0.20	0.955	0.004	0.948	0.961
σ_{a}	Inverse-Gamma	0.10	2.00	0.086	0.008	0.074	0.099
σ_{a}^{4}	Inverse-Gamma	0.10	2.00	0.065	0.011	0.045	0.080
σ_{a}^{8}	Inverse-Gamma	0.10	2.00	0.092	0.008	0.079	0.104
Government Spending Shock							
ρ_{g}	Beta	0.50	0.20	0.960	0.007	0.947	0.970
$\rho_{x g}$	Beta	0.50	0.20	0.826	0.042	0.754	0.891
σ_{g}	Inverse-Gamma	0.10	2.00	0.030	0.013	0.024	0.048
σ_{g}^{4}	Inverse-Gamma	0.10	2.00	0.033	0.015	0.025	0.057
σ_{g}^{8}	Inverse-Gamma	0.10	2.00	2.404	0.050	2.322	2.484
$\phi_{g D}$	Normal	0.00	1.00	-0.009	0.001	-0.012	-0.007
Labor Tax Shock							
$\rho_{\tau n}$	Beta	0.70	0.20	0.998	0.002	0.994	1.000
$\sigma_{\tau n}$	Inverse-Gamma	0.10	2.00	0.174	0.023	0.136	0.209
$\sigma_{\tau n}^{4}$	Inverse-Gamma	0.10	2.00	0.215	0.023	0.176	0.252
$\sigma_{\tau n}^{8}$	Inverse-Gamma	0.10	2.00	0.270	0.019	0.238	0.303
$\phi_{n D}$	Normal	0.00	1.00	0.001	0.000	0.001	0.001
$\phi_{n l}$	Normal	0.00	1.00	0.028	0.001	0.026	0.031
Capital Tax Shock							
$\rho_{\tau k}$	Beta	0.70	0.20	0.875	0.006	0.866	0.884
$\sigma_{\tau k}$	Inverse-Gamma	0.10	2.00	1.060	0.066	0.953	1.164
$\sigma_{\tau k}^{4}$	Inverse-Gamma	0.10	2.00	1.173	0.061	1.073	1.276
$\sigma_{\tau k}^{8}$	Inverse-Gamma	0.10	2.00	1.298	0.057	1.201	1.387
$\phi_{k D}$	Normal	0.00	1.00	-0.001	0.000	-0.001	-0.001
$\phi_{k I}$	Normal	0.00	1.00	-0.009	0.001	-0.010	-0.008

Tax Shock Correlations

Table 13: Prior and Posterior Distributions of the Shock Processes - Continued

Parameter	Prior distribution			Posterior distribution			
	Distribution	Mean	Std. Dev.	Mean	Std. Dev.	5 Percent	95 Percent
$\left\{\varepsilon_{\tau k}^{0}, \varepsilon_{\tau n}^{0}\right\}$	Beta*	0.00	0.30	-0.103	0.108	-0.271	0.089
$\left\{\varepsilon_{\tau k}^{4}, \varepsilon_{\tau n}^{4}\right\}$	Beta*	0.00	0.30	-0.727	0.061	-0.825	-0.625
$\left\{\varepsilon_{\tau k}^{8}, \varepsilon_{\tau n}^{8}\right\}$	Beta*	0.00	0.30	-0.456	0.057	-0.544	-0.357
Monetary Policy							
ρ_{R}	Beta	0.50	0.20	0.864	0.005	0.856	0.871
σ_{R}	Inverse-Gamma	0.10	2.00	0.317	0.013	0.297	0.338
$\phi_{R_{\Pi}}$	Gamma	1.50	3.00	2.392	0.037	2.338	2.454
$\phi_{R_{Y}}$	Gamma	0.50	3.00	0.000	0.000	0.000	0.000
Measurement Error							
$\sigma_{y}^{m e}$	Uniform	0.01	0.01	0.000	0.000	0.000	0.000
$\sigma_{w}^{m e}$	Uniform	0.07	0.04	0.142	0.000	0.142	0.142
$\sigma_{\tau n}^{m e}$	Uniform	0.46	0.26	0.318	0.019	0.287	0.350
$\sigma_{\tau k}^{m e}$	Uniform	0.40	0.23	0.792	0.000	0.792	0.792

Notes: The standard deviations of the shocks and measurement errors have been transformed into percentages by multiplying with 100 . Beta* indicates that the correlations follow a beta-distribution stretched to the interval $[-1,1]$.

Table 14: Variance Decomposition Output Growth Federal (in percent)

	1	4	8	12	16	20	Inf
$\xi_{p r e f}^{0}$	23.14	10.52	8.59	6.17	5.97	5.75	5.58
ε_{w}^{0}	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{w}^{4,8}$	2.53	3.38	3.20	2.33	2.59	3.00	3.87
ε_{z}^{0}	8.31	10.42	9.88	7.09	7.14	7.38	8.06
$\varepsilon_{z}^{4,8}$	5.76	7.36	7.21	5.20	5.24	5.47	6.11
ε_{x}^{0}	11.40	17.80	18.49	13.68	13.24	12.78	12.50
$\varepsilon_{x}^{4,}$	5.29	6.24	8.18	7.07	7.13	6.90	6.74
$\varepsilon_{z,}^{0}$	0.33	0.67	0.70	0.53	0.51	0.49	0.48
$\varepsilon_{z I}^{4,8}$	0.01	0.04	0.15	0.14	0.14	0.13	0.13
ε_{a}^{0}	2.57	1.36	1.47	1.61	1.99	2.16	2.43
$\varepsilon_{a}^{4,8}$	2.31	1.54	1.25	1.15	1.67	2.17	3.44
ξ^{R}	12.69	7.09	6.04	5.10	5.25	5.09	5.03
ε_{g}^{0}	0.02	0.01	0.01	0.00	0.00	0.00	0.00
$\varepsilon_{g}^{4,8}$	0.87	1.09	1.09	24.77	24.06	23.13	22.38
$\varepsilon_{\tau n}^{0}$	6.18	7.80	7.59	5.45	5.41	5.53	6.17
$\varepsilon_{\tau n}^{4,8}$	17.71	22.50	22.13	15.97	15.80	16.11	11.02
$\varepsilon_{\tau k}^{0}$	0.01	0.80	1.55	1.25	1.22	1.25	1.75
$\varepsilon_{\tau k}^{4,8}$	0.32	0.84	2.02	2.14	2.18	2.16	3.83
$\varepsilon_{w, t}^{m e}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau n, t}^{m, t}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{\tau k, t}^{m e}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\varepsilon_{y, t}^{m e}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00

References

Auerbach, Alan J., 1989. Tax Reform and Adjustment Costs: The Impact on Investment and Market Value. International Economic Review 30, 939-962.
Basu, Susanto, Fernald, John G., Kimball, Miles S., 2006. Are Technology Improvements Contractionary? American Economic Review 96, 1418-1448.

Beaudry, Paul, Lucke, Bernd, 2010. Letting Different Views about Business Cycles Compete, in: NBER Macroeconomics Annual 2009, Volume 24, pp. 413-455.
Fernald, John, 2012. A Quarterly, Utilization-Adjusted Series on Total Factor Productivity. Federal Reserve Bank of San Francisco Working Paper 2012-19.
Fisher, Jonas D.M., 2006. The Dynamic Effects of Neutral and Investment Specific Technology Shocks. Journal of Political Economy 114, 413-451.
Ireland, Peter N., 2004. A Method for Taking Models to the Data. Journal of Economic Dynamics and Control 28, 1205-1226.

Jones, John Bailey, 2002. Has Fiscal Policy Helped Stabilize the Postwar U.S. Economy? Journal of Monetary Economics 49, 709-746.
Leeper, Eric M., Plante, Michael, Traum, Nora, 2010. Dynamics of Fiscal Financing in the United States. Journal of Econometrics 156, 304-321.
Mendoza, Enrique G., Razin, Assaf, Tesar, Linda L., 1994. Effective Tax Rates in Macroeconomics: Cross-Country Estimates of Tax Rates on Factor Incomes and Consumption. Journal of Monetary Economics 34, 297-323.
Pfeifer, Johannes, 2013. A guide to specifying observation equations for the estimation of DSGE models. Tech. rep. University of Mannheim.
Ramey, Valerie A., 2011. Identifying Government Spending Shocks: It's all in the Timing. Quarterly Journal of Economics 126, 1-50.
Sargent, Thomas J, 1989. Two Models of Measurements and the Investment Accelerator. Journal of Political Economy 97, 251-87.
Schmitt-Grohé, Stephanie, Uribe, Martín, 2011. Business Cycles With A Common Trend in Neutral and Investment-Specific Productivity. Review of Economic Dynamics 14, 122-135.

- 2012. What's News in Business Cycles. Econometrica 80, 2733-2764.

[^0]: ${ }^{1}$ The two shocks have standard deviations of 0.033% and 1.602%, respectively, and have been scaled to have a size of one percent each.

[^1]: ${ }^{2}$ Although the Ramey (2011)-shocks are expected changes in defense spending, spending actually starts rising one quarter after the announcement. Thus, the spending "news"-variable more closely corresponds to a surprise shock in our framework.

[^2]: ${ }^{3}$ This is also the growth rate of the individual components of GDP along the balanced growth path.

[^3]: ${ }^{4}$ The equation for L_{t} follows from

 $$
 \log L_{t}=\log \left(L_{t} \frac{L}{L}\right) \approx \hat{L}_{t}+\log L .
 $$

 The equation for government spending follows from

 $$
 \log \frac{G_{t}}{G_{t-1}}=\log \frac{g_{t} X_{t}^{g}}{g_{t-1} X_{t-1}^{g}}=\log \frac{g_{t} x_{t}^{g} X_{t}^{Y}}{g_{t-1} x_{t-1}^{g} X_{t-1}^{Y}}=\log \frac{g_{t} x_{t}^{g}}{g_{t-1} x_{t-1}^{g}} \mu_{t}^{y} .
 $$

 Note that the presence of x^{g} also implies that there is no perfect linear restriction between the GDP components following from the resource constraint. Hence, we do not need to add additional measurement error. For more on observation equations, see Pfeifer (2013).

