Online Appendix to "Simple Regression Based Tests for Spatial Dependence"

Benjamin Born^{*} Jörg Breitung[†]

This appendix presents tables and graphs of additional simulation results not included in the paper.

North-east modified rook matrix with 25% share in the north-east

In the paper, we choose a specification where the share of units located in the north-east is approximately 75%. To check the robustness of our results to this choice, we also run simulations with a 25% share of units located in the north-east. Table (1) and figure (1) show that the results do not change compared to the 75% case.

k ahead and k behind weight matrix design

Here, we employ a "k ahead and k behind" spatial weight matrix (see e.g. Kelejian and Prucha 1999, Kapoor, Kelejian and Prucha 2007). In this design, the *i*-th row of the weight matrix, where k < i < N - k, has nonzero elements in positions $i - k, i - (k - 1), \ldots, i + (k - 1), i + k$, directly relating each element of the matrix to the k immediate neighbors ahead and behind. Adjusting the first and last k rows appropriately creates a circular world. To check whether $W_1^n \neq W_2^n$ changes our results, we set k = 5 for W_1^n and k = 3 for W_2^n . Following common practice in empirical applications, we row normalize the spatial weight matrix, yielding nonzero entries of 1/(2k). As reported in table (2) and figure (2), the results are fairly robust to the above modifications.

Anselin(1988) Columbus, Ohio weight matrix

As an example of a real weight matrix, we consider the weight matrix from Anselin's (1988) Columbus, Ohio, crime dataset. Again, the results do not change much qualitatively (see table (3) and figure (3)).

^{*}Bonn Graduate School of Economics, University of Bonn, Kaiserstrasse 1, D-53113 Bonn, Germany. Email: bborn@uni-bonn.de

[†]Institute of Econometrics and Operations Research, Department of Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany. *Email:* breitung@uni-bonn.de

References

Anselin, L.: 1988, Spatial Econometrics: Methods and Models, Kluwer, Dordrecht.

- Kapoor, M., Kelejian, H. H. and Prucha, I. R.: 2007, Panel data models with spatially correlated error components, *Journal of Econometrics* 140, 97–130.
- Kelejian, H. H. and Prucha, I. R.: 1999, A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model, *International Economic Review* **40**(2), 509–533.

,,,, _, _, _, _, _,, ,,							
n	LM^a	\widetilde{LM}^{a}	LM^b	\widetilde{LM}^b	LM^c	\widetilde{LM}^c	
	Homoskedasticity						
97	0.053	0.056	0.055	0.056	0.058	0.056	
177	0.049	0.054	0.049	0.053	0.052	0.049	
281	0.053	0.053	0.051	0.054	0.047	0.046	
485	0.053	0.052	0.055	0.053	0.047	0.050	
945	0.052	0.053	0.049	0.051	0.054	0.052	
	Heteroskedasticity						
97	0.150	0.042	0.168	0.050	0.339	0.050	
177	0.184	0.050	0.193	0.051	0.396	0.041	
281	0.201	0.048	0.204	0.048	0.422	0.047	
485	0.234	0.048	0.235	0.050	0.432	0.046	
945	0.238	0.049	0.236	0.048	0.449	0.041	

Table 1: Empirical Sizes, 5% level

Note: Empirical sizes are calculated using 5000 replications. *North-east modified rook matrix* with a share of 25% of the units located in the north-east.

		1		,			
n	LM^a	\widetilde{LM}^{a}	LM^b	\widetilde{LM}^{b}	LM^c	\widetilde{LM}^c	
	Homoskedasticity						
100	0.034	0.062	0.043	0.054	0.038	0.049	
150	0.042	0.061	0.048	0.058	0.044	0.047	
250	0.043	0.057	0.050	0.052	0.050	0.040	
500	0.045	0.055	0.050	0.052	0.050	0.036	
1000	0.045	0.051	0.048	0.049	0.045	0.036	
	Heteroskedasticity						
100	0.138	0.045	0.283	0.044	0.348	0.040	
150	0.164	0.046	0.290	0.043	0.371	0.039	
250	0.203	0.049	0.290	0.047	0.389	0.037	
500	0.220	0.051	0.282	0.049	0.400	0.037	
1000	0.234	0.051	0.284	0.051	0.413	0.034	

Table 2: Empirical Sizes, 5% level

Note: Empirical sizes are calculated using 5000 replications. "k ahead and k behind" specification.

Table 3: Empirical Sizes, 5% level							
n	LM^a	\widetilde{LM}^{a}	LM^b	\widetilde{LM}^{b}	LM^c	\widetilde{LM}^c	
	Homoskedasticity						
49	0.046	0.061	0.051	0.059	0.048	0.049	
	Heteroskedasticity						
49	0.179	0.041	0.150	0.042	0.168	0.035	

 Table 3: Empirical Sizes, 5% level

Note: Empirical sizes are calculated using 5000 replications. Columbus, Ohio grid used by Anselin (1988).

Figure 1: Size corrected power under homo- and heteroskedasticity (n=281). North-east modified rook matrix with a share of 25% of the units located in the north-east.

Figure 2: Size corrected power under homo- and heteroskedasticity (n=250). "k ahead and k behind" specification.

Figure 3: Size corrected power under homo- and heteroskedasticity (n=49). Columbus, Ohio grid used by Anselin (1988).